07.02.2022

Lichtgesteuerte Mikroschwimmer

Winzige Roboter können in salzhaltiger Flüssigkeit einzeln oder als Schwarm schwimmen und Medikamente transportieren.

Diese Story hätten sich selbst Science-Fiction-Autoren kaum ausdenken können: Mikroroboter, die durch Blut oder andere Flüssigkeiten in unserem Körper strömen, Licht als Antrieb nutzen, Medikamente transportieren und an Ort und Stelle absetzen. Was wie eine weit hergeholte Fantasie­geschichte klingt, ist jedoch die Kurz­zusammen­fassung einer neuen Forschungsarbeit. Die in dem Projekt vorgestellten Mikroschwimmer haben das Potenzial, eines Tages Aufgaben in lebenden Organismen oder biologischen Umgebungen zu erfüllen, die ansonsten schwer zugänglich sind. Noch weiter in die Zukunft gedacht, könnten die Schwimmer eines Tages helfen, Krebs oder andere Krankheiten gezielt zu behandeln.

 

Abb.: Durch Licht gesteuerte Mikroschwimmer (Bild: MPI-IS)
Abb.: Durch Licht gesteuerte Mikroschwimmer (Bild: MPI-IS)

In ihrer Arbeit stellen Forscher am Max-Planck-Institut für Intelligente Systeme (MPI-IS) und am benachbarten Max-Planck-Institut für Festkörperforschung (MPI-FKF) organische Mikropartikel vor, die sie durch natürliche Flüssigkeiten und verdünntes Blut auf bisher ungeahnte Weise steuern können. Selbst in sehr salzhaltigen Flüssigkeiten können die Mikroschwimmer mit Hilfe von sichtbarem Licht mit hoher Geschwindigkeit einzeln oder als Schwarm vorwärts getrieben werden. Sie sind zudem biokompatibel und können ohne weitere Modifikationen gezielt Medikamente aufnehmen und abgeben. Am MPI-IS waren Wissenschaftler der Abteilung für Physische Intelligenz unter Leitung von Metin Sitti beteiligt, am MPI-FKF Wissenschaftler der Abteilung für Nanochemie unter Leitung von Bettina Lotsch.

Derart vielseitige Mikroschwimmer zu entwerfen und herzustellen schien bislang unmöglich. Die Fortbewegung durch Lichtenergie wird durch Salze, die im Wasser oder Körper zu finden sind, behindert. Das erfordert ein ausgeklügeltes Design, was die Anwendung teuer und komplex macht, und es wird schwierig, sie in größerer Menge herzustellen. Auch die Steuerung der Roboter von außen ist komplex und kostspielig. Eine weitere Königs­disziplin im Bereich der Nanorobotik ist die kontrollierte Frachtaufnahme und -abgabe an Ort und Stelle, wie etwa für den gezielten Medikamenten­transport und -einsatz.

Die Wissenschaftler verwendeten für ihre Experimente ein poröses Kohlenstoffnitrid (CNx), das aus organischen Stoffen wie zum Beispiel Harnstoff künstlich hergestellt werden kann. Ähnlich wie die Solarzellen einer Photo­voltaik­anlage absorbiert das Kohlenstoffnitrid Licht, das dann die Energie liefert, um den Roboter vorwärts zu bewegen, wenn Licht auf die Partikel­oberfläche strahlt.

„Licht als Energiequelle für den Antrieb zu nutzen ist bei einem Versuch in einer Petrischale oder bei Anwendungen direkt unter der Haut sehr praktisch“, sagt Filip Podjaski, Gruppenleiter in der Abteilung für Nanochemie am MPI-FKF. „Es gibt nur ein Problem: Selbst winzige Konzentrationen an Salz verhindern durch Licht angetriebene Bewegung. Salze sind jedoch in allen biologischen Flüssigkeiten zu finden: in Blut, in Zellflüssigkeiten, Verdauungs­säften und so weiter. Wir aber konnten zeigen, dass unsere CNx-Mikroschwimmer in biologischen Flüssigkeiten – selbst bei sehr hoher Salzkonzentration – funktionieren. Das geht nur dank eines günstigen Zusammenspiels mehrerer Faktoren: Die effiziente Licht­energie­umwandlung bietet einen sehr guten Antrieb und die poröse Struktur der Nanopartikel einen optimalen Ionenfluss durch sie hindurch. Der durch Salz erzeugte Widerstand wird sozusagen reduziert. Zudem begünstigt Licht wahrscheinlich die Mobilität von Ionen in diesem besonderen Material – eine zusätzliche Verbesserung, um den Schwimmer noch effizienter vorwärts bewegen zu können.“

Nachdem das Team gezeigt hatte, dass die Schwimmer salztolerant sind, wandte es sich der Herausforderung zu, sie als Medikamenten-Transportmittel zu nutzen. „Dies ist ebenfalls aufgrund der Porosität des Materials möglich“, erklärt Varun Sridhar. Er ist PostDoc am MPI-IS und der Erstautor der Veröffentlichung. Sein Team und er beluden die kleinen Poren der Schwimmer mit dem Krebsmedikament Doxorubicin. „Die Partikel haben das Medikament wie ein Schwamm aufgenommen, bis zu einer beachtlich hohen Menge von 185 Prozent der Partikelmasse. Doxorubicin blieb stabil an das Kohlenstoff­nitrid gebunden – sogar länger als einen Monat. Wir haben dann gezeigt, dass eine kontrollierte Freisetzung des Wirkstoffs in einer Umgebung mit saurem pH-Wert, wie etwa im Magen, ganz natürlich erfolgt. Zudem konnten wir den Mikroschwimmer beleuchten und so das Medikament freisetzen –unabhängig von einer pH-Wert-Änderung. Und selbst bei voller Beladung verlangsamte sich der Antrieb nicht wesentlich, was sehr praktisch ist“, fügt Sridhar hinzu.

Die kontrollierte Freisetzung des Wirkstoffs bleibt eine Herausforderung. Unter sauren Bedingungen wird das Medikament schnell in großen Mengen abgegeben. In anderen Teilen des Körpers oder in biologischen Umgebungen gibt es diese drastische Änderung des pH-Wertes allerdings nicht. Daher braucht man einen alternativen externen Trigger, um das Medikament freizusetzen.

„Wir haben festgestellt, dass die Beleuchtung mit blauem Licht, die den Antrieb ermöglicht, gleichzeitig das mitgeführte Medikament freisetzt“, erklärt Podjaski. „Für ziel­gerichtete Anwendungen ist das nicht immer erwünscht, da eine Freisetzung von Medikamenten über die gesamte Wegstrecke des Partikels erfolgen würde. Hier kommt die besondere Auflade­fähigkeit unseres neuen ‚Solarbatterie‘-Kohlenstoff­nitrids ins Spiel: Wenn das Material in einer sauerstoffarmen (hypoxischen) Umgebung beleuchtet wird, kann es die Lichtenergie speichern, wie wir in einer vorhergehenden Publikation gezeigt hatten, und auch zum aktiven Schwimmen im Dunkeln genutzt werden. Unter solchen hypoxischen Bedingungen, wenn der Partikel aufgeladen wird, verändern sich die Wechselwirkungen mit den adsorbierten Arzneimitteln, sodass seine Freisetzung erheblich gesteigert wird. Die effiziente Einwirkung auf bestimmte Zellen wird so ermöglicht. Zudem agiert das CNx durch seine Aufladefähigkeit auch sensorisch und responsiv. Die in sauerstoffarmer Umgebung bedingte Lichtladefähigkeit des Materials wird quasi intrinsisch erkannt, und die verbesserte Medikamenten-Freisetzung erfolgt als Reaktion darauf. Das entspricht vom Prinzip den komplexen Entscheidungs­prozessen im Körper, die durch Nervenzellen gesteuert werden. Hier jedoch ist die ganze Funktion schon semi-autonom im Material des Mikroschimmers kodiert.“

Die Wechselwirkung mit Krebsmedikamenten bewies das Team in einem Versuch mit echten Tumorzellen. In ihrer Arbeit zeigen die Wissenschaftler, wie sie mit Doxorubicin beladene Kohlenstoff­nitrid­partikel in der Nähe von Krebszellen beleuchten, und wie das Medikament freigesetzt und von den Zellen aufgenommen wird, was sie dann zerstört.

„Unsere Arbeit zeigt, welch ungeahntes Potenzial solch poröse Mikropartikel haben. Die Ausgangs­materialien für ihre Herstellung sind reichlich vorhanden. Poröse organische Netzwerke, wie dieses Kohlenstoff­nitrid, können leicht und mit vielseitigen Eigenschaften produziert werden – ideale Bedingungen, sie als Material zum Bau von Mikroroboter zu nutzen“, sagt Metin Sitti.

„Poröse organische Materialien ermöglichen von Natur aus große Porenvolumina und innere Oberflächen, die viel Platz für Beladung lassen, während sie gleichzeitig die Beschränkungen für den Antrieb mit Licht überwinden, die sonst in Gegenwart von Ionen auftreten. Eine weitere Anpassung der molekularen Struktur des Materials könnte noch kontrolliertere Wechsel­wirkungen mit einer Medikamenten­ladung ermöglichen, ohne dass eine spezielle Verkapselung der Medikamente erforderlich ist. In Zukunft können wir die optoelektronischen Materialeigenschaften gezielt nutzen, um daraus semi-autonom agierende Mikroroboter für Anwendungen in der Biomedizin zu entwickeln“, sagt Bettina Lotsch.

Auch wenn die Mikroschwimmer eine Zukunftsvision sind und derzeit nur unter Labor-Bedingungen funktionieren, könnten die in der Studie präsentierte Grundlagen­forschung den Weg ebnen hin zu lichtgesteuerten und biokompatiblen Materialien sowie zu intelligenten halbautonomen Systemen, die in anderen Technologien Anwendung finden. „Wir hoffen, dass wir viele kluge Köpfe inspirieren können, noch bessere Materialien und Methoden für die Steuerung von Mikrorobotern zu finden, sie noch reaktions­fähiger zu machen, um damit der Forschung und dem Wohl unserer Gesellschaft zu dienen“, so Sitti abschließend.

MPI-IS / DE

 

Weitere Infos

Weitere Beiträge

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen