16.09.2005

Magnete im Gleichtakt

Internationale Forschergruppe am Dresdner Max-Planck-Institut für Chemische Physik fester Stoffe erreicht erstmals Bose-Einstein-Kondensation im Festkörper.


- Bose-Einstein-Kondensation im Festkörper

Eine Kondensation von magnetischen Anregungen in einen makroskopischen Quantenzustand wurde von einer internationalen Forschergruppe am Dresdner Max-Planck-Institut für Chemische Physik fester Stoffe zum ersten Mal in einem Festkörper nachgewiesen.

Weltweit findet eine intensive Suche nach dem Phänomen der Bose-Einstein-Kondensation (BEK) im Festkörper statt, deren potentielle Existenz in zahlreichen theoretischen Arbeiten vorhergesagt wird. Das Faszinierende an diesem Effekt ist, dass alle "Teilchen" (typischer Weise 10 23) einen makroskopischen Quantenzustand annehmen, also mit einer einzigen Wellenfunktion beschrieben werden können und darüber hinaus alle Teilchen im Gleichtakt schwingen.
Die Bose-Einstein-Kondensation tritt bei Temperaturen knapp oberhalb des absoluten Temperaturnullpunkts auf. Das erste makroskopische Quantenphänomen, das mit der Bose-Einstein-Kondensation interpretiert werden konnte, war 1934 die Suprafluidität eines Heliumisotops. Die experimentelle Realisierung der Bose-Einstein-Kondensation von schwereren Atomen gelang erst 1995, für die der deutsche Physiker Wolfgang Ketterle zusammen mit zwei amerikanischen Kollegen 2001 den Physik-Nobelpreis erhielt. Vorrausetzung dazu sind sehr tiefe Temperaturen und eine relativ geringe Anzahl Atome pro cm 3 (typischerweise 10 14).

Nun ist es Dresdner Wissenschaftlern am Max-Planck-Institut für Chemische Physik fester Stoffe zum ersten Mal gelungen, zweifelsfrei den Nachweis für eine Bose-Einstein-Kondensation von magnetischen Anregungen in einem Festkörper zu erbringen. Entscheidend für den Durchbruch der Dresdner Gruppe war die erfolgreiche Kombination von extrem tiefen Temperaturen und hohen Magnetfeldern. Hierbei kommt dem Magnetfeld, das mehr als das hunderttausendfache der Stärke des Erdmagnetfeldes beträgt, besondere Bedeutung zu. Es erlaubt die Anzahl der kondensierten Teilchen - in diesem Fall magnetische Elementaranregungen, so genannten Magnonen - exakt einzustellen. Untersucht wurden die magnetischen Eigenschaften des Isolators Cs 2CuCl 4 bis hinab zu etwa drei hundertstel Grad über dem absoluten Temperaturnullpunkt. Die Kupferatome sind in dieser Substanz magnetisch und bilden aufgrund ihrer räumlichen Anordnung im Festkörper Ebenen aus. Diese Ebenen mit ihren speziellen Eigenschaften machen die Verbindung zu einem aussichtsreichen Kandidaten für eine mögliche Bose-Einstein-Kondensation. Die präzise Messung der spezifischen Wärme bei abnehmender Temperatur, aber konstantem Magnetfeld (bis zu 12 Tesla), lieferte die Temperaturwerte, unterhalb derer die Substanz in einen magnetisch geordneten Zustand übergeht. Diese Ordnungstemperatur geht in einer für die Bose-Einstein-Kondensation charakteristischen Weise gegen den Temperaturnullpunkt, wenn das Magnetfeld erhöht wird. Neben dieser Beobachtung zeigen die Experimente weitere Fakten, die für das Auftreten einer Bose-Einstein-Kondensation erfüllt sein müssen. Damit ist Cs 2CuCl 4 der erste Festkörper, in der alle theoretisch geforderten Bedingungen in hervorragender Weise im Experiment nachgewiesen wurden.



Abb. 1: Ausrichtung der Spins (dargestellt als Pfeile) der Cu-Atome in der Ebene (a). Sobald ein Magnetfeld senkrecht zur Ebene angelegt wird, drehen sich die Spins in Richtung des Magnetfeldes (b). Oberhalb der kritischen Stärke des Magnetfeldes (B c) sind alle Spins parallel zum äußeren Feld ausgerichtet (c).

Bild: Max-Planck-Institut für Chemische Physik fester Stoffe




Quelle: Pressemitteilung der MPG


Weitere Infos:

  • Originalveröffentlichung:
    T. Radu, H. Wilhelm, V. Yushankhai, D. Kovrizhin, R. Coldea, Z. Tylczynski, T. Lühmann, F. Steglich, Bose-Einstein Condensation of Magnons in Cs 2CuCl 4, Phys. Rev. Lett. 95, 127202 (2005) 
    http://dx.doi.org/10.1103/PhysRevLett.95.127202.
  • Ansprechpartner:
    Priv-Doz. Dr. Heribert Wilhelm  & Prof. Dr. Frank Steglich
    Max-Planck-Institut für Chemische Physik fester Stoffe
    http://www.cpfs.mpg.de/

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen