Magnetische Nanopropeller liefern Gen-Fracht
Spiralförmige Nanotransporter bergen großes Potenzial für biomedizinische Anwendungen.
Wissenschaftler des Mikro, Nano und Molekulare Systeme Labors und der Abteilung für Moderne Magnetische Systeme am Max-Planck-Institut für Intelligente Systeme MPI-IS ist es gelungen, Nanomagnete zu entwickeln, die in Zukunft neue Verfahren in der Medizin und bei minimal-invasiven Operationen ermöglichen könnten. Aus einer Eisen-Platin-Legierung stellten die Forscher spiralförmige Nanopropeller her, die so groß wie ein Bakterium sind. In Zusammenarbeit mit Wissenschaftlern des Francis-Crick-Instituts in London, einem britischen Forschungsinstitut auf dem Gebiet der Biomedizin, und des Max-Planck-Instituts für medizinische Forschung in Heidelberg zeigten die Forscher, dass die magnetischen Nanopropeller nicht nur vollständig biokompatibel sind, sondern auch genetisches Material zu einzelnen Zellen liefern können.
„Die fantastisch klingende Idee, dass magnetisch gesteuerte Nanopropeller eines Tages die präzise Abgabe von Genen oder Medikamenten ermöglichen könnten, birgt großes Potenzial für die Medizin. Wir sind dieser Vision nun einen kleinen Schritt nähergekommen“, sagt Peer Fischer, der das Mikro, Nano und Molekulare Systeme Labor leitet. Eine große Herausforderung beim Einsatz magnetischer Nanopartikel in der Biomedizin besteht darin, dass einige magnetische Materialien hohe Toxizität aufweisen wie Nickel oder Kobalt. Andere sind nur schwer herzustellen (Zinkferrit), weisen geringe chemische Stabilität auf wie etwa Eisen oder sie besitzen nur sehr schwache magnetische Momente (Eisenoxide). Die in vielen Bereichen beliebten Neodym-Eisen-Bor (NdFeB) Supermagnete wiederum, können bei dieser kleinen Größe bislang nicht hergestellt oder verwendet werden. Daher ist es sehr schwierig, ein ideal geeignetes magnetisches Material für Anwendungen im Nanobereich zu finden.
Neuartige magnetische Nanopropeller überwinden nun diese Einschränkungen. Den Stuttgarter Wissenschaftlern gelang es, Nanostrukturen zu bauen, die die stärksten bekannten Mikromagnete (NdFeB) übertreffen, dabei aber chemisch stabil und biokompatibel sind. Diese neuen Nanopropeller basieren auf der L10 Eisen-Platin Legierung. Sie sind vielversprechend, da sie alle Eigenschaften vereinen, die in der Praxis für solch winzige Lieferanten nötig wären. Die herausragenden magnetischen Eigenschaften des verwendeten Eisen-Platin-Materials wurden zuvor durch die Abteilung für Moderne Magnetische Systeme am MPI-IS unter der Leitung von Gisela Schütz entwickelt.
„Es ist uns gelungen, FePt-Nanomagnete herzustellen, die etwa fünfzig Prozent stärker sind als die besten Neodym-Verbindungen der Welt“, sagt Schütz. Zur Herstellung der Nanopropeller nutzten die Forscher den ;Hochvakuum Nanofabrikationsprozess – Glancing Angle Deposition (GLAD), gefolgt von einem Glühvorgang von einer Stunde bei fast 700 Grad. Durch die Verwendung von GLAD konnte das Team, wie auch schon bei anderen Projekten, in wenigen Stunden Milliarden an schraubenförmigen Nanopropellern herstellen.
Mit Unterstützung der Biologen Maximiliano Gutierrez und Claudio Bussi vom Francis-Crick-Institut und des Bioingenieurs Andrew Holle vom Max-Planck-Institut für medizinische Forschung zeigte das Team, dass die biokompatiblen Propeller zu Zellen gesteuert werden und Gene liefern konnten. Sie beluden die Propeller zunächst mit DNA, die Information für ein grün fluoreszierendes Protein trug. Die Propeller transportierten die DNA dann ins Innere von Lungenkarzinomzellen, die daraufhin grün zu leuchten begannen. Die Forscher konnten die Propeller präzise durch das die Zellen umgebende Zellmedium steuern. Aufgrund der hartmagnetischen Eigenschaften, die mit denen starker NdFeB-Mikromagnete vergleichbar sind, können ;die Propeller in einer Sekunde eine Strecke ihrer 13-fachen Länge zurücklegen.
Vincent Kadiri geht davon aus, dass die Eisen-Platin-Legierung in Zukunft auch bei der Herstellung anderer Mikro- und Nanoobjekte Verwendung finden wird. „Ich bin sehr glücklich, dass es uns gelungen ist, biokompatible Nanopropeller mit FePt zu konstruieren, die die bisher in diesem Gebiet verwendeten Materialien übertreffen. Es wird interessant sein, die neuen Anwendungen zu sehen, die dadurch ermöglicht werden.“ Die Studie zeige, dass FePt großes Potenzial für den Einsatz in der Mikrorobotik und in einer Vielzahl biomedizinischer Anwendungen aufweise. Maximiliano Gutierrez, der in seiner Forschung den gefährlichen Tuberkulose-Erreger studiert, sagt: „Der gezielte Transport von Antibiotika durch biokompatible Nanopropeller könnte eine neue, intelligente Strategie darstellen, um das große Problem der antimikrobiellen Resistenz anzugehen.“
MPI-IS / JOL
Weitere Infos
- Originalveröffentlichung
V. M. Kadiri et al.: Biocompatible Magnetic Micro‐ and Nanodevices: Fabrication of FePt Nanopropellers and Cell Transfection, Adv. Mat., online 6. Mai 2020; DOI: 10.1002/adma.202001114 - Micro, Nano & Molecular Systems Laboratory, Max-Planck-Institut für Intelligente Systeme MPI-IS, Stuttgart