Magnetisches Schalten in Rekordzeit
Forscher aus Jülich und Stuttgart haben mithilfe einer Simulation entdeckt, wie sich magnetische Strukturen in Rekordgeschwindigkeit durch einen äußeren Magnetfeldpuls umpolen lassen.
Forscher aus Jülich und Stuttgart haben mithilfe einer Simulation entdeckt, wie sich magnetische Strukturen in Rekordgeschwindigkeit durch einen äußeren Magnetfeldpuls umpolen lassen.
Wissenschaftler vom Institut für Festkörperforschung (IFF) am Forschungszentrum Jülich haben zusammen mit Kollegen vom Max-Planck-Institut in Stuttgart eine grundlegend neue Methode entdeckt, magnetische Strukturen in Rekordgeschwindigkeit durch einen äußeren Magnetfeldpuls umzupolen. Wie in der aktuellen Ausgabe der Fachzeitschrift „Physical Review Letters“ berichtet wird, erhoffen sich die Forscher zukünftige Anwendungsmöglichkeiten für äußerst schnelle Datenspeicher.
In winzigen scheibchenförmigen Magneten, die eine Größe von gerade mal einem Millionstel Meter haben, kann sich die Magnetisierung spontan zu einem Wirbel anordnen. Solche Wirbel erinnern an alltägliche Phänomene, wie Wasser, das durch einen Ausguss abfließt, oder die Luftströmungen in einem Wirbelsturm. Auch magnetische Wirbel besitzen ein Zentrum, den so genannten Kern, der einen Durchmesser von etwa zehn Nanometern oder weniger als 100 Atomen hat. Im Wirbelkern ist die Magnetisierung senkrecht zur Wirbelebene ausgerichtet und zeigt entweder nach oben oder nach unten. Dadurch eignen sich diese Strukturen prinzipiell für Anwendungen als binäre Datenspeicher, umso mehr, da die Richtung der Magnetisierung äußerst stabil ist. Verantwortlich für die hohe Stabilität ist die stärkste Kraft, die in solchen Magneten vorkommt, die so genannte Austausch-Wechselwirkung. Wenn diese interne Kraft genutzt wird, so berechneten die Jülicher Festkörperphysiker, ist es möglich, die Magnetisierungsrichtung des Kerns umzukehren, ohne extrem starke Magnetfelder einzusetzen.
Mithilfe modernster Computer-Simulationen haben die Wissenschaftler in der Gruppe um Riccardo Hertel vom IFF in Jülich zusammen mit Kollegen vom Max-Planck-Institut in Stuttgart eine Möglichkeit aufgezeigt, Magnet-Kerne mit sehr kurzen und vergleichsweise schwachen magnetischen Pulsen umzupolen. Diese Pulse bewirken Prozesse im Inneren der Magnet-Scheibchen, an denen die Austausch-Wechselwirkung einen entscheidenden Anteil hat. Denn deren Stärke sorgt für höchste Geschwindigkeit: „Das wichtigste Ergebnis unserer Studie ist, dass schon ein magnetischer Puls von nur fünf Milliardstel Millisekunden Dauer ausreicht, um die Magnetisierungsrichtung des Kerns umzukehren – das ist fast 100 Mal schneller als der schnellste Computer-Prozessor“, freut sich Hertel. „Der Puls verzerrt die magnetische Struktur der Scheibe so stark, dass ein zusätzliches Wirbel-Paar entsteht. Dieses Paar besteht aus einem neuen Wirbel und dessen Gegenstück, einem so genannten Anti-Wirbel. Anschließend löschen sich der ursprüngliche Wirbel und der neue Anti-Wirbel aus, so dass nur noch ein Wirbel übrig bleibt. Dessen Kern zeigt nach unten, wenn die ursprüngliche Magnetisierung nach oben zeigte, und umgekehrt.“
Abb.: Die Bildfolge zeigt von links oben nach rechts unten die Umkehr eines magnetischen Wirbelkerns: Bildung eines Wirbelpaares (rechts oben) und Auslöschung des ursprünglichen und eines der neuen Wirbel (unten links und Mitte). Die Pfeile deuten die Magnetisierungsrichtung auf der Oberfläche an. An den Kreuzungspunkten der roten und blauen Bänder befinden sich die Kerne der Wirbel und Anti-Wirbel. Die Farbe zeigt die Magnetisierungsrichtung der Kerne: orange bedeutet nach „oben“, grün nach „unten“. (Bild: FZ Jülich)
Details dieser Prozesse haben die Jülicher Forscher in vorhergehenden Arbeiten untersucht. So haben sie etwa gezeigt, dass die Austausch-Wechselwirkung die treibende Kraft für die Entstehung und Auslöschung der Wirbel ist. „In einer Simulations-Studie haben wir kürzlich die Dynamik der Auslöschung von Wirbel und Gegenwirbel detailliert beschrieben. Dieser grundlegende Prozess des Nanomagnetismus war bis dahin noch unerforscht“, erläutert Sebastian Gliga, Doktorand in Hertels Gruppe. Es handelt sich hierbei um den offenbar kompliziertesten Umkehrmechanismus, der gegenwärtig auf diesem Gebiet bekannt ist. Innerhalb von fünf Monaten hat das Team seine Forschungsergebnisse in drei anerkannten Fachzeitschriften wie „Physical Review Letters“ und „Nature“ veröffentlicht.
Neben der hohen Geschwindigkeit ist außerdem bemerkenswert, dass die Prozesse automatisch ablaufen: Das externe Magnetfeld ruft lediglich eine Störung in der inneren magnetischen Struktur hervor, die komplizierten Umstrukturierungen erfolgen automatisch bei der anschließenden Stabilisierung. „Unsere Erkenntnisse stellen eine viel versprechenden Fortschritt auf dem Weg zu schnelleren und kompakteren magnetischen Datenspeichern dar“, bekräftigt Claus M. Schneider, Direktor am IFF.
Quelle: Forschungszentrum Jülich
Weitere Infos:
- Original-Veröffentlichung:
R. Hertel, S. Gliga, M. Fähnle, C. M. Schneider, Ultrafast Nanomagnetic Switching of Vortex Cores, Physical Review Letters 98, 117201 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.117201 - Forschungszentrum Jülich:
http://www.fz-juelich.de - Forschungszentrum Jülich, Institut für Festkörperforschung:
http://www.fz-juelich.de/iff/index.php
Weitere Literatur:
- R. Hertel und C. M. Schneider, Exchange Explosions: Magnetization Dynamics during Vortex-Antivortex Annihilation, Physical Review Letters 97, 177202 (2006).
- B. Van Waeyenberge et al., Magnetic Vortex Core Reversal by Excitation with Short Bursts of an Alternating Field, Nature 444, 461 (2006).