30.10.2023

Metall zu Isolator und zurück

Optischer Hohlraum ermöglicht reversiblen Übergang zwischen isolierender und metallischer Phase.

Werden Materialien zur Interaktion mit Licht gezwungen, können sich ihre Eigenschaften grundlegend ändern. Forscher der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und der Universität Triest haben in einer Studie gezeigt, dass Tantalsulfid, ein metallisches Quantenmaterial, in einem optischen Hohlraum von einem elektrischen Leiter zu einem Isolator werden kann. Da dieser Prozess reversibel ist und kontaktlos gesteuert werden kann, eröffnet er völlig neue Perspektiven für Elektronik, Energiespeicherung und Quantencomputing. 



Abb.: Das Forschungsteam nutzt für seine Experimente einen sogenannten...
Abb.: Das Forschungsteam nutzt für seine Experimente einen sogenannten optischen Hohlraum – einen engen Raum zwischen zwei Spiegeln, in dem Atome und Moleküle in eine Wechselwirkung mit Licht gezwungen werden.
Quelle: FAU

Es ist der Traum eines jeden Materialforschers: die Eigenschaften eines Stoffes so zu kontrollieren, dass er völlig unterschiedliche Funktionen erfüllt. Und zwar innerhalb geschlossener Systeme – als umkehrbarer, präziser und kontaktlos steuerbarer Prozess. Der Verwirklichung dieses Traums sind deutsche, italienische und slowenische Forscher nun einen großen Schritt nähergekommen. „Wir konnten Tantalsulfid, ein Quantenmaterial mit metallischen Eigenschaften, so manipulieren, dass es sowohl als elektrischer Leiter als auch als Isolator fungiert“, erklärt Daniele Fausti, Inhaber des Lehrstuhls für Festkörperphysik an der FAU und außerordentlicher Professor für Materialphysik an der Universität Triest, Italien.

Das Forschungsteam nutzt dafür einen optischen Hohlraum – einen engen Raum zwischen zwei Spiegeln, in dem Atome und Moleküle in eine Wechselwirkung mit Licht gezwungen werden. Optische Hohlräume verändern die elektromagnetische Umgebung eines Materials und erlauben es, seine Eigenschaften präzise und kontaktlos zu steuern. Im Experiment mit Tantalsulfid wurde ein reversibler Übergang zwischen der isolierenden und der metallischen Phase erreicht, indem die Position der Spiegel, die das Material umgeben, mechanisch verändert wurde. „Die Möglichkeit, die Leitfähigkeit eines Materials auf diese Weise zu modulieren, birgt ein ungeahntes Potenzial für die Präzisionssensorik und die Steuerung elektronischer Prozesse“, sagt Fausti.

Vor allem bei der weiteren Entwicklung der Quantentechnologien könnte die Entdeckung eine wichtige Rolle spielen: Quantenchips etwa sind zwar extrem leitungsfähig, aber auch sehr anfällig für Störungen. Sollte es gelingen, die elektromagnetischen Eigenschaften von Bauteilen in Quantencomputern kontaktlos zu verändern, könnten Schaltvorgänge stark vereinfacht und der Einfluss von Störfaktoren wesentlich reduziert werden. Zugleich wäre es möglich, Quantencomputer noch kompakter zu konstruieren. Mit ihrer Entdeckung dringen die Forschenden auch in den Bereich der supraleitenden Materialien vor: Viele Quantentechnologien sind auf Supraleiter angewiesen, die elektrischen Strom ohne Verlust leiten. Dafür müssen sie jedoch fast auf den absoluten Temperaturnullpunkt gekühlt werden – ein ebenso aufwändiger wie energieintensiver Vorgang.

„Das Einbringen in optische Hohlräume könnte ein Weg sein, Quantenmaterialien bei Temperaturen zu Supraleitern zu machen, die immer näher an der Raumtemperatur liegen“, erklärt Daniele Fausti. „Wir sind sehr neugierig darauf, diesen Weg in den kommenden Jahren weiter zu erforschen.“

FAU / DE


Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen