10.09.2012

Miniatur-Radar mit Millimeter-Genauigkeit

Gesamte Hochfrequenztechnik integriert auf einem Chip, kleiner als eine 1-Cent-Münze.

Parkassistenten im Auto erlauben es mittlerweile, auch in engste Parklücken gefahrlos einzufahren. Eine exakte Abstandsvermessung zu allen Seiten mittels Radarwellen bildet dafür die notwendige Voraussetzung. Auch in vielen Industrieprozessen müssen Fertigungsroboter in unbekanntem Umfeld millimetergenau gesteuert werden. Das Konsortium SUCCESS hat nun unter Beteiligung des Karlsruher Institutes für Technologie eine Innovation vollzogen und die notwendige Radar-Technik in millimetergroße Chip-Gehäuse integriert.

Abb.: Der neue Radar-Sensor ist nur halb so groß wie eine Eurocent-Münze, beinhaltet aber alle notwendigen Hochfrequenzkomponenten. (Bild: Robert Bosch GmbH / SUCCESS)

„Erstmals ist es nun gelungen, alle Hochfrequenzkomponenten in einem Chip-Gehäuse unterzubringen“, unterstreicht Thomas Zwick den Vorteil der neuen Technikinnovation. „Der Anwender kann den Chip auf seiner Standard-Platine auflöten und erhält niederfrequente Signale, welche er problemlos weiterverarbeiten kann“, erklärt der Leiter des Instituts für Hochfrequenztechnik und Elektronik am Karlsruher Institut für Technologie (KIT).

Der Sensor sendet und empfängt elektromagnetische Wellen mit einer Frequenz von 122 Gigahertz, also einer Wellenlänge von etwa zweieinhalb Millimetern. Aus der Laufzeit der Welle zu einem Objekt in mehreren Metern Entfernung wird der Abstand mit einer Genauigkeit von bis zu unter einem Millimeter berechnet. Über den Dopplereffekt lässt sich sogar die Geschwindigkeit des Objekts messen. Dabei ist der innovative Sensor selbst nur 8 mal 8 Millimeter groß, enthält aber alle notwendigen Hochfrequenz-Komponenten. Die Ausgangssignale sind dadurch niederfrequente Signale, die mittels Standardelektronik weiter verarbeitet werden können.

„Diese kompakte Technik wird eine Menge neuer Anwendungen erschließen“, ist sich Zwick sicher. „Langfristig könnte eine Serienproduktion die Stückkosten für den Radarsensor unter einen Euro drücken.“ Neben Umfelderkennung in Autos und der Steuerung von Industrierobotern lassen sich viele weitere Anwendungen und Innovationen denken, etwa extrem flache Bewegungssensoren für Türen und Tore, die hinter der Tapete verschwinden oder Bohrmaschinen, die eigenständig bei der gewünschten Bohrtiefe abschalten.

„Die komplexe Integration der Technik war nur durch das breite Spektrum an Kompetenzen der SUCCESS-Mitglieder möglich“, freut sich Zwick. Der Chip basiert auf der SiGe-BiCMOS-Technologie des IHP-Leibniz-Instituts für innovative Mikroelektronik, die für höchste Frequenzen geeignet ist. Das Design des Chips wurde vom IHP und von der Silicon Radar GmbH entwickelt. Am KIT wurde das Design der Sende- und Empfangsantennen und die Integration von Chip und Antennen auf die kleine Fläche durchgeführt. Das dünne, flexible organische Trägermaterial der Antennen wurde von der Hightec MC AG aus dem schweizerischen Lenzburg entwickelt. Das finnische Unternehmen SELMIC hat das keramische Gehäuse hergestellt, sowie die Einzelteile des Prototyps zusammengefügt. Die Robert Bosch GmbH hat eine Vielzahl möglicher Anwendungen untersucht und darauf basierend die Systemauslegung des Sensors erstellt, die Integration der Ansteuerelektronik durchgeführt und den Funktionstest übernommen. Weitere Mitglieder des von der EU geförderten Konsortiums sind ST Microelektronics, Evatronix und die Universität Toronto.

KIT / DE

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen