Mit Gold gespickte Terahertz-Quelle
Neues Germaniumbauteil liefert Terahertz-Pulse mit vielen verschiedenen Frequenzen zugleich.
Mit Terahertz-Wellen lassen sich Eigenschaften von zahlreichen Materialien enträtseln, Autolacke auf ihre Qualität prüfen und Briefumschläge durchleuchten. Allerdings ist die Erzeugung dieser Wellen nach wie vor eine Herausforderung. Einem Team des Helmholtz-Zentrums Dresden-Rossendorf HZDR, der TU Dresden und der Universität Konstanz ist nun ein deutlicher Fortschritt gelungen. Es hat ein mit Gold gespicktes Germaniumbauteil entwickelt, das kurze Terahertz-Pulse mit einer vorteilhaften Eigenschaft erzeugt: Die Pulse sind überaus breitbandig, liefern also viele verschiedene Terahertz-Frequenzen zugleich. Da sich das Bauteil mit den Methoden der Halbleiterindustrie fertigen ließe, verspricht die Entwicklung einen breitgefächerten Einsatz in Forschung und Technik.
Im Spektrum der elektromagnetischen Strahlung liegen Terahertz-Wellen genau zwischen Mikrowellen und Infrarotstrahlung. Doch während Mikrowelle und Infrarot schon lange den Alltag erobert haben, finden Terahertz-Wellen erst allmählich Verwendung. Der Grund: Erst seit Beginn der 2000er Jahre gelingt es Experten, halbwegs passable Quellen für Terahertz-Wellen zu bauen. Perfekt sind diese Sender aber noch nicht – sie sind relativ groß und teuer, und die von ihnen abgegebene Strahlung hat nicht immer die gewünschten Eigenschaften. Eine der heute etablierten Erzeugungsmethoden basiert auf einem Kristall aus dem Halbleiter Galliumarsenid. Wird dieser Kristall mit kurzen Laserpulsen bestrahlt, bilden sich im Galliumarsenid Ladungsträger. Diese Ladungen werden durch eine angelegte Spannung beschleunigt. Das erzwingt die Abstrahlung einer Terahertz-Welle – im Grunde der gleiche Mechanismus wie bei einem UKW-Sendemast, in dem hin und her bewegte Ladungen Radiowellen erzeugen.
Doch diese Methode besitzt mehrere Nachteile: „Sie lässt sich nur mit relativ teuren Speziallasern betreiben“, erläutert HZDR-Physiker Harald Schneider. „Mit Standardlasern, wie man sie für die Glasfaser-Kommunikation verwendet, funktioniert das nicht.“ Ein weiteres Manko: Galliumarsenid-Kristalle liefern nur relativ schmalbandige Terahertz-Pulse und damit einen eingeschränkten Frequenzbereich – was ihr Einsatzgebiet merklich begrenzt. Deswegen setzten Schneider und sein Team auf ein anderes Material – den Halbleiter Germanium. „Bei Germanium lassen sich günstigere Laser nutzen, sogenannte Faserlaser“, sagt Schneider. „Außerdem sind Germaniumkristalle sehr transparent und erlauben damit die Emission von sehr breitbandigen Pulsen.“ Bislang aber gab es ein Problem: Wird reines Germanium mit einem kurzen Laserpuls bestrahlt, dauert es mehrere Mikrosekunden, bis sich die elektrische Ladung im Halbleiter wieder abgebaut hat. Erst danach kann der Kristall den nächsten Laserpuls aufnehmen. Heutige Laser können ihre Impulse im Takt von wenigen Dutzend Nanosekunden abfeuern – eine Schussfolge, viel zu schnell für das Germanium.
Um diese Schwierigkeit zu meistern, suchten die Forscher nach einem Trick, mit dem sich die elektrischen Ladungen im Germanium schneller abbauen lassen. Die Lösung fand sich bei einem prominenten Edelmetall – Gold. „Wir nutzten einen Ionenbeschleuniger, um Goldatome in einen Germaniumkristall zu schießen“, erläutert Schneiders Kollege Abhishek Singh. „Dabei drang das Gold bis zu 100 Nanometer tief in den Kristall ein.“ Anschließend erhitzten die Fachleute den Kristall einige Stunden lang auf 900 Grad Celsius. Die Hitzekur sorgte dafür, dass sich die Goldatome gleichmäßig im Germaniumkristall verteilten. Der Erfolg zeigte sich, als das Team das goldgespickte Germanium mit ultrakurzen Laserpulsen beleuchtete: Statt für mehrere Mikrosekunden im Kristall herumzugeistern, verschwanden die elektrischen Ladungsträger bereits nach knapp zwei Nanosekunden wieder – etwa tausendmal schneller als vorher. Bildlich gesprochen fungierte das Gold dabei als Falle, die Ladungen einfängt und neutralisieren hilft. „Dadurch lässt sich der Germaniumkristall nun mit hoher Wiederholungsrate mit Laserpulsen beschießen, und er funktioniert trotzdem“, freut sich Singh.
Die neue Methode ermöglicht Terahertz-Pulse mit extrem großer Bandbreite: Statt sieben Terahertz wie bei der etablierten Galliumarsenid-Technik ist es nun das Zehnfache – siebzig Terahertz. „Auf einen Schlag bekommt man ein breites und lückenloses Spektrum“, sagt Harald Schneider. „Damit haben wir eine äußerst vielseitige Quelle zur Hand, geeignet für verschiedenste Anwendungen.“ Ein weiteres Plus: Im Prinzip lassen sich die Germanium Bauteile mit derselben Technologie verarbeiten, mit der auch Mikrochips hergestellt werden. „Anders als Galliumarsenid ist Germanium kompatibel mit Silizium“, beschreibt Schneider. „Und da sich die neuen Bauteile zusammen mit herkömmlichen Glasfaser-Lasern betreiben lassen, könnte man die Technik vergleichsweise platzsparend und preiswert gestalten.“
Das dürfte das golddotierte Germanium nicht nur für wissenschaftliche Anwendungen interessant machen, etwa die detaillierte Analyse innovativer zweidimensionaler Materialien wie Graphen. Möglich scheinen auch Anwendungen in Medizin und Umwelttechnik. Denkbar sind zum Beispiel Sensoren, die bestimmte Gase in der Atmosphäre anhand ihres Terahertz-Spektrums aufspüren. Die heutigen Terahertz-Quellen sind dafür noch zu teuer. Das neue Verfahren aus Dresden-Rossendorf könnte dazu beitragen, solche Umweltsensoren künftig billiger zu machen.
HZDR / JOL
Weitere Infos
- Originalveröffentlichung
A. Singh et al.: Up to 70 THz bandwidth from an implanted Ge photoconductive antenna excited by a femtosecond Er:fibre laser, Light Sci Appl 9, 30 (2020); DOI: 10.1038/s41377-020-0265-4 - Institut für Ionenstrahlphysik und Materialforschung, Helmholtz-Zentrum Dresden-Rossendorf HZDR, Dresden