Molekülschwingungen aufspüren
Neue Rastertunnelmethode verstärkt Signale und erhöht die Frequenzauflösung um ein Vielfaches.
In Molekülen vibrieren die Atome mit jeweils charakteristischen Mustern und Frequenzen. Deshalb sind Vibrationen ein wichtiges Hilfsmittel zur Untersuchung von Molekülen und molekularen Prozessen wie chemischen Reaktionen. Mit Rastertunnelmikroskopen lassen sich zwar einzelne Moleküle abbilden, ihre Schwingungen waren damit bisher aber nur schwer detektierbar.
Physiker der Christian-Albrechts-Universität zu Kiel (CAU) erfanden nun eine Methode, mit der sich die Vibrationssignale bis um das Fünfzigfache verstärken lassen. Gleichzeitig steigerten sie damit die Frequenzauflösung um ein Vielfaches. Die neue Methode wird helfen, Wechselwirkungen in Molekülsystemen besser zu verstehen und Simulationsmethoden weiterzuentwickeln.
Für die Entdeckung von Jan Homberg, Alexander Weismann und Richard Berndt vom Institut für Experimentelle und Angewandte Physik spielt ein quantenmechanischer Effekt eine entscheidende Rolle, das inelastische Tunneln. Elektronen, die auf ihrem Weg im Rastertunnelmikroskop von einer Metallspitze zur Substratoberfläche ein Molekül durchqueren, können Energie an das Molekül abgeben oder von ihm aufnehmen. Dieser Energieaustausch erfolgt in Portionen, die von den Eigenschaften des jeweiligen Moleküls bestimmt werden.
Normalerweise geschieht dieser Energieübertrag nur selten und ist deshalb schwer messbar. Um das Messsignal zu verstärken und simultan eine hohe Frequenzauflösung zu erreichen, nutzte das CAU-Team eine besondere Eigenschaft von Molekülen auf Supraleitern, die sie zuvor entdeckt hatten: Geeignet arrangiert zeigen die Moleküle einen Zustand, der in Spektren nadelförmig, sehr hoch und extrem scharf erscheint, also sehr gut sichtbar ist – die sogenannte Yu-Shiba-Rusinov Resonanz. Unterstützt wurden die Experimente durch theoretische Arbeiten von Troels Markussen von der Software-Firma Synopsis in Kopenhagen.
CAU / DE