Nanodiamanten verbessern Magnetresonanztomographie
Hyperpolarisierte Diamanten erzeugen milliardenfach stärkeres Signal.
Die Magnetresonanztomographie, kurz MRT, ermöglicht eine erstaunlich genaue Darstellung von inneren Organen und Geweben ohne Strahlenbelastung. Dank Quantentechnologie lassen sich eventuell schon bald Stoffwechselprozesse, die etwa den Erfolg einer Krebstherapie anzeigen, detailliert verfolgen und quantifizieren. Diese Weiterentwicklung, bei der hyperpolarisierte, nanometergroße Diamanten eine wichtige Rolle spielen, ist für Diagnostik, Forschung und Medikamentenentwicklung gleichermaßen interessant. Im Zuge des EU-Projekts „Hyperdiamond“ haben Forscher der Uni Ulm etwa fünf Millionen Euro für vier Jahre eingeworben. Die Gruppe will vor allem ein Gerät entwickeln, das die chemisch funktionalisierte Polarisation von Nanodiamanten ermöglicht. Diese sollen in einem MRT-Scanner ein milliardenfach stärkeres Signal erzeugen.
Die Stärke des MRT-Signals wird durch die Polarisation von Kernspins im Körper bestimmt, die wiederum durch hochleistungsfähige Magnete in entsprechenden Scannern erreicht wird. Dank der Hyperpolarisation – der geordneten Ausrichtung von Kernspins – lässt sich die Empfindlichkeit der Magnetresonanztomographie noch einmal um das Zehntausendfache steigern. Solche hochleistungsfähigen Verfahren, die schon heute bei der Einschätzung von Tumoren eingesetzt werden, sind allerdings zeitaufwändig, teuer und funktionieren nur bei tiefen Temperaturen. Das Team der Uni Ulm will diese Nachteile mithilfe der Quantentechnologie umgehen. Eine wichtige Rolle spielen dabei extrem reine, künstliche Diamanten: In ihren Stickstoff-Fehlstellenzentren kann der Elektronenspin mittels Laserlicht polarisiert werden. Nun wollen die Forscher diese Polarisation mithilfe von Mikrowellenstrahlung auf Kernspins in Diamanten oder in externe Moleküle übertragen, um sie zu hyperpolarisieren. So soll die effiziente Darstellung molekularer Prozesse bei hoher räumlicher Auflösung möglich werden.
Im Labor konnten Fedor Jelezko, Leiter des Instituts für Quantenoptik, und Martin Plenio, Leiter des Instituts für Theoretische Physik, diese Hyperpolarisation bereits erzeugen und nachweisen. Inzwischen haben die Wissenschaftler ihre Idee zum Patent angemeldet und wollen sie in die Anwendung tragen. In naher Zukunft will die interdisziplinäre Forschergruppe aus den Bereichen Quantenphysik, Materialwissenschaften, bioorganische Chemie sowie medizinische Bildgebung zwei Neuheiten im Bereich Hyperpolarisation entwickeln und auf den Markt bringen. Der „Diamond Hyperpolarizer“ soll eine kosten- und zeitsparende Lösung auf Basis von Nanodiamanten bieten: Das teure Kryostat und die supraleitenden Magnete, die aktuell zum Standard gehören, werden durch einen günstigen Diodenlaser und ein Mikrowellenresonator-System ersetzt. „Letztlich kann die Hyperpolarisation bei Raumtemperatur innerhalb weniger Minuten anstatt sechzig bis neunzig Minuten durchgeführt werden“, sagen die Forscher. Dazu kommt zweitens die Entwicklung hyperpolarisierter Nanodiamanten, die – zum Beispiel an Antikörper und Signalpeptide geheftet – als Marker für MRT-Scanner eingesetzt werden können. So könnte eine Empfindlichkeit erreicht werden, die dem teuren Goldstandardverfahren Positronen-Emissions-Tomographie in nichts nachsteht. Da die Nanodiamanten für viele Minuten im Zustand der Hyperpolarisation verbleiben, ist eine längere Beobachtung molekularer Prozesse möglich. Radiologen könnten zum Beispiel die Aufnahme von Antikörpern in Krebszellen engmaschig und hochselektiv beobachten.
„Die geringeren Kosten und Anforderungen an die Infrastruktur sind klare Pluspunkte unserer Technologie und werden neuartige Experimente ermöglichen – zum Beispiel in der Medikamentenentwicklung. Auf längere Sicht kann unser Verfahren zur weiteren Verbreitung der hyperpolarisierten Bildgebung in der Krankenversorgung beitragen“, erklärt Projektkoordinator Martin Plenio.
U. Ulm / RK