Neuer Rekord für Si-Solarzelle
Prototyp aus multikristallinem Silizium erreicht 22,3 Prozent Wirkungsgrad.
Multikristallines Silizium hat derzeit mit rund 57 Prozent Marktanteil den größten Anteil an der Solarmodulproduktion weltweit und ist damit das Arbeitspferd der Branche. In den letzten Jahren hingegen sind die Wirkungsgrade für das in der Herstellung etwas teurere monokristalline Material deutlich angestiegen, sodass der Effizienznachteil des multikristallinen Siliziums immer größer wurde. Den Freiburger Forschern am Fraunhofer ISE ist es nun gelungen, den erst vor wenigen Monaten aufgestellten Weltrekordwirkungsgrad für multikristallines Silizium noch einmal zu steigern und die Wirkungsgradlücke zum monokristallinen Silizium wieder zu verkleinern. Dabei wurde die für dieses Material magische Grenze von 22 Prozent überschritten. 22,3 Prozent des auf die Rekordzelle fallenden Sonnenlichts wandelt diese in Solarstrom um und das Potenzial des Materials und der Zelltechnologie ist dabei noch nicht ausgereizt.
Abb.: Multikristalline SiliZiumsolarzelle mit einem Weltrekordwirkungsgrad von 22,3 Prozent. (Bild: Fh.-ISE)
Die Verwendung von hochreinem Silizium des Projektpartners Wacker sowie gezielte Anpassungen bei der Kristallisation und bei den Zellprozessschritten auf die Bedürfnisse des multikristallinen Ausgangsmaterials haben den neuen Rekord ermöglicht. Eine wichtige Rolle spielten dabei eine optimierte Plasmatextur sowie die am Fraunhofer ISE entwickelte Tunnel Oxide Passivated Contact-Technologie (TOPCon) für die Rückseitenkontaktierung. Bei diesem Verfahren werden die elektrischen Kontakte strukturierungsfrei auf einer leitfähig passivierten Oberfläche der Solarzelle angebracht. Dadurch lassen sich Ladungsverluste reduzieren und Strom deutlich effizienter gewinnen.
„Wir freuen uns, dass es uns gelungen ist, dieses herausragende Ergebnis zu erzielen“, freut sich Martin Hermle, Abteilungsleiter Vorentwicklung Höchsteffiziente Siliziumsolarzellen am Fraunhofer ISE und fügt hinzu: „Der Schlüssel zum Erfolg war die gesamtheitliche Betrachtung und Optimierung aller Schritte von der Kristallisation bis hin zu den einzelnen Solarzellenprozessen. Durch die enge Zusammenarbeit zwischen der Charakterisierung, der Kristallisation und der Solarzellentechnologie konnten wir Schritt für Schritt die Verlustmechanismen reduzieren und eine optimierte Prozesskette erarbeiten“. Bereichsleiter Stefan Glunz ergänzt: „Diese erfolgreichen Ergebnisse bei der Steigerung der Solarzelleneffizienz basieren auf einer kontinuierlichen Entwicklung und zeigen die Stärke der europäischen Forschung. Gleichzeitig weisen sie den Weg für den Einstieg Europas in eine Weltmarkt-relevante Produktion der nächsten Technologiegeneration.“
Fh.-ISE / JOL