25.07.2007

Neun Sekunden Schwerelosigkeit

Die Katapult-Experimente am Bremer Fallturm liefern bemerkenswerte Forschungsergebnisse in der Schwerelosigkeit.



Mit erfolgreichen Fallturmexperimenten unter Anwendung des neuen Katapultsystems haben Wissenschaftler der Universität Bremen jetzt neue Forschungsergebnisse erhalten. Während der ca. neun Sekunden Schwerelosigkeit führten die Forscher des Zentrums für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) Experimente durch, die neue Erkenntnisse über das Strömungsverhalten von Flüssigkeiten mit freien Oberflächen in der Schwerelosigkeit liefern.

Die insgesamt zwölf Experimente dienen dazu, die Handhabung von Flüssigkeiten in der schwierigen Umgebung der Schwerelosigkeit an Bord von Weltraumfahrzeugen zu verbessern. Eine technisch elegante und auch kostengünstige Lösung hierfür sind die so genannten Kapillarkanäle. Dabei handelt es sich um seitlich offene Leitungen, in denen Flüssigkeit strömt. Bei dem untersuchten Kapillarkanal handelt es sich um einen rechteckigen Kanal, der an drei Seiten geschlossen und an einer Seite offen ist, einer so genannten Nut. Die strömende Flüssigkeit wird durch ihre Oberflächenspannung und die guten Benetzungseigenschaften der Flüssigkeit zum Wandmaterial in der Nut gehalten. Welche Kräfte dabei wirksam sind und wie sie interagieren, kann seit einigen Jahren mit den Gleichungen der Strömungsmechanik mathematisch modelliert werden. Diese Modellierung muss allerdings durch Experimente immer wieder überprüft werden.

Diesem Ziel diente auch das Katapult-Experiment, das an einer Nut mit einer Breite von fünf Millimeter, einer Tiefe von 30 Millimeter und einer Länge von elf Millimeter durchgeführt wurde. Eine Hochgeschwindigkeits-Kamera filmte das Experiment während des Katapultschusses. Diese Daten können dann mit Hilfe einer optischen Bildauswertung analysiert und mit dem mathematischen Modell verglichen werden. Als Flüssigkeit wurde ein sehr dünnflüssiges Fluid verwendet, dessen Stoffeigenschaften wie Zähigkeit, Dichte und Oberflächenspannung in Kombination mit der Geometrie des Testkanals realen Treibstoffen sehr ähnlich sind. Die Ergebnisse können somit vom Modell auf ein Raumfahrzeug übertragen werden.




Abb.:
Überkritische Strömungsgeschwindigkeit und dem damit verbundenen Kollaps der freien Oberfläche mit Gaseinbruch am Kanalauslass (© Uni Bremen, ZARM)


Mit ihrem Experiment konnten die Bremer Forscher jetzt sehr präzise ermitteln, bei welcher Geschwindigkeit die Strömung abreißt und warum das geschieht. Im Kapillarkanal breiten sich nämlich in Längsrichtung Kapillarwellen aus. Sobald die Strömung genauso schnell wird wie diese Wellen, reißt sie ab - ein Phänomen, das "Choking-Effekt" genannt wird. Die neuen Ergebnisse tragen grundlegend dazu bei, bisher kaum verstandene Vorgänge in Kapillarkanälen zu erklären. Weiterhin dienen die Experimente der Vorbereitung eines Raumstationsexperimentes (CCF), welches im Jahr 2009 in Kooperation mit der NASA in der Microgravity Science Glovebox betrieben werden soll. Die Forschungsarbeit des ZARM wird mit Mitteln des Bundesministeriums für Bildung und Forschung durch das Deutsche Zentrum für Luft- und Raumfahrt (DLR) gefördert.

Quelle: idw

Weitere Infos:

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Themen