Photoionisation liefert Einblicke in komplexe molekulare Potenziale
Komplexe Wege beeinflussen Zeitverzögerung in der Ionisation von Molekülen.
Wie können Wissenschaftler den Mechanismus der Photoionisation nutzen, um Einblicke in komplexe molekulare Potentiale zu gewinnen? Diese Frage konnte jetzt ein Team um Giuseppe Sansone von der Uni Freiburg beantworten. Bei dem Ursprung der Photoionisation, auch photoelektrischer Effekt genannt, absorbiert ein Atom oder ein Molekül ein Photon aus einem äußeren Feld. Die dabei absorbierte Energie wird auf ein Elektron übertragen, das freigesetzt wird und ein einfach geladenes Ion zurücklässt. Unter verschiedenen Gesichtspunkten und für verschiedene Anwendungen kann der Effekt als unmittelbar angesehen werden, es gibt also keine nennenswerte Zeitverzögerung zwischen der Absorption des Photons und dem Zeitpunkt, zu dem das Elektron emittiert wird. Mehrere in den letzten Jahren durchgeführte Experimente haben jedoch gezeigt, dass zwischen diesen beiden Prozessen winzige, aber messbare Verzögerungen im Attosekundenbereich auftreten.
„Dank der fortschrittlichen Laserquellen und der speziell entwickelten Spektrometer, die in unserem Labor zur Verfügung stehen, können wir extrem kurze Lichtblitze erzeugen, die nur wenige hundert Attosekunden dauern“, erklärt Sansone. „Außerdem können wir die Ausrichtung einfacher Moleküle rekonstruieren, wenn sie ein Photon aus einem externen Laserpuls absorbieren. Wir haben solche Pulse verwendet, um die Bewegung der Elektronen nach der Absorption eines Photons zu untersuchen.“
Dabei fanden die Forscher heraus, dass das Elektron auf seinem Weg aus dem Molekül heraus eine komplexe Landschaft durchläuft, die von Potenzialspitzen und -tälern geprägt ist. Diese werden von der räumlichen Verteilung der Atome, aus denen das System besteht, bestimmt. Der Weg, den das Elektron während seiner Bewegung zurücklegt, kann die Zeit beeinflussen, die es braucht, um wieder frei zu werden.
In dem Experiment hat das Team um Sansone die Zeitverzögerungen gemessen, die die von den CF4-Molekülen in verschiedenen räumlichen Richtungen emittierten Elektronen mit Hilfe eines Attosekunden-Pulszugs in Kombination mit einem ultrakurzen Infrarotfeld aufholen. „Durch die Kombination dieser Informationen mit der Charakterisierung der räumlichen Ausrichtung des Moleküls können wir verstehen, wie die Potenziallandschaft und insbesondere die Potenzialspitzen die Zeitverzögerung beeinflussen", sagt der Forscher.
Die Arbeit kann auf komplexere molekulare Systeme und auf Potenziale, die sich auf ultrakurzen Zeitskalen ändern, ausgeweitet werden. Generell biete dieser Ansatz die Möglichkeit, betont Sansone, komplexe Potenziallandschaften von innen heraus mit einer noch nie dagewesenen zeitlichen Auflösung abzubilden.
ALU Freiburg / RK
Weitere Infos
- Originalveröffentlichung
H. Ahmadi et al.: Attosecond photoionisation time delays reveal the anisotropy of the molecular potential in the recoil frame, Nat. Commun. 13, 1242 (2022); DOI: 10.1038/s41467-022-28783-x - Attosekunden- und Starkfeldphysik (G. Sansone), Physikalisches Institut, Albert-Ludwigs-Universität Freiburg