03.04.2020 • Plasma

Plasmen treiben die Biokatalyse an

Erfolge im interdisziplinären Sonderforschungsbereich „Transiente Atmosphärendruck-Plasmen“.

Die Ka­talyse durch Enzyme hat ge­genüber traditio­nellen chemi­schen Verfah­ren viele Vorteile. Sie hat aber auch Schwachstellen. So sind manche Enzyme nicht sehr stabil. Enzyme, die Wasser­stoffper­oxid umset­zen, werden sogar durch hohe Kon­zentrati­onen des Substra­tes inak­tiviert. Ein For­schungsteam der Ruhr-Univer­sität Bo­chum (RUB) hat ge­mein­sam mit interna­tionalen Partnern ein Ver­fahren entwi­ckelt, bei dem der Aus­gangs­stoff Wasser­stoffper­oxid den Biokata­lysato­ren mit­hilfe von Plasma kontrol­liert zu­geführt wird. Die En­zyme selbst sind durch eine Puffer­schicht vor schädli­chen Be­standtei­len des Plasmas ge­schützt. Anhand zweier Modell­enzyme konnte das Team zeigen, dass das Verfah­ren funktio­niert.

Abb.: Marco Krewing, Abdulkadir Yayci und Julia Bandow er­for­schen mit­tels...
Abb.: Marco Krewing, Abdulkadir Yayci und Julia Bandow er­for­schen mit­tels physi­kalischer Atmo­sphä­ren­druck­plas­men die Mög­lich­keiten einer um­welt­freund­lichen Ka­ta­lyse mit Bio­enzy­men. (Bild: RUB, Marquard)

Bei der Biokata­lyse werden Chemi­kalien durch Zellen oder de­ren Be­stand­teile herge­stellt, insbe­sondere durch Enzyme. Gegen­über tra­ditionel­len che­mischen Verfah­ren hat die Bi­okata­lyse viele Vor­teile: Die Re­aktions­bedin­gungen sind meist deutlich milder, der Energie­ver­brauch niedri­ger und es ent­steht weniger toxi­scher Abfall. Durch die hohe Spezifi­tät von Enzy­men er­geben sich au­ßerdem weniger Neben­reaktio­nen. Manche Feinche­mikalien können sogar nur durch Biokata­lyse syntheti­siert werden.

Die Schat­tenseite der Bi­okata­lyse mit­hilfe von En­zymen ist die geringe Stabili­tät man­cher En­zyme. „Da das Enzym in die­sen Fäl­len oft ersetzt werden muss, was teuer ist, ist es enorm wichtig, die Sta­bilität unter Produk­tionsbe­dingun­gen zu erhö­hen“, er­klärt Erstau­tor Ab­dulkadir Yayci vom Lehr­stuhl für Ange­wandte Mikro­biologie von Prof. Dr. Julia Bandow.

Das For­schungsteam hat sich mit zwei ähnli­chen Enzym­klassen beschäf­tigt: Per­oxi­dasen und Per­oxygenasen. Beide verwen­den Wasser­stoffper­oxid als Aus­gangs­stoff für Oxidati­onen. Das ent­schei­dende Problem ist, dass Wasser­stoffper­oxid zwar für die Ak­tivität absolut notwen­dig ist, aber in höheren Kon­zentrati­onen zum Ak­tivitäts­verlust der En­zyme führt. Speziell für diese Enzym­klassen ist es daher sehr wichtig, Wasser­stoffper­oxid do­siert zu­zufüh­ren.

Um das zu be­werk­stelli­gen, un­tersuch­ten die Forsche­rinnen und For­scher Plasmen als Quelle für Was­serstoff­peroxid. Werden Flüssig­keiten mit Plasmen behan­delt, entsteht eine Vielzahl von re­aktiven Sauer­stoff- und Stick­stoff-Spezies, die dann teils zu langle­bigem Wasser­stoffper­oxid ab­reagie­ren, welches für die Biokata­lyse ge­nutzt werden kann.

In der Arbeit, in der die Meerret­tichper­oxidase als eines der Mo­dellen­zyme diente, konnte das Team zeigen, dass die­ses Sys­tem prinzipi­ell funk­tioniert. Gleich­zeitig gelang es, die Schwachstellen der Plas­mabe­hand­lung zu identifi­zieren: „Die Plas­mabe­hand­lung greift auch di­rekt die Enzyme an und inakti­viert sie, höchst­wahr­schein­lich durch die hochre­aktiven, kurzle­bigen Spezies in der plasma-behan­delten Flüssig­keit“, be­schreibt Abdul­kadir Yayci. Die Ar­beits­gruppe konnte die Re­aktions­bedin­gungen verbes­sern, in­dem sie das En­zym an ein iner­tes Trä­germa­terial band. Dadurch entsteht über dem En­zym eine Puffer­zone, in der die hochre­aktiven Plasma-Spezies abrea­gieren können, ohne dem En­zym zu schaden.

An ei­nem zweiten Enzym, der un­spezifi­schen Per­oxygenase aus dem Pilz Ag­rocybe aegerita, prüften die For­scher dann ih­ren An­satz. Diese Per­oxygenase kann hochse­lektiv eine Vielzahl von Substra­ten oxi­dieren. „Wir konnten zeigen, dass diese Spezifi­tät auch unter Plas­mabe­hand­lung er­halten bleibt und hochse­lektive biokata­lytische Reaktio­nen mit­hilfe von Plasma möglich sind“, fasst Ju­lia Bandow zusam­men.

Die Ar­beiten wurden von der Deut­schen For­schungsgemein­schaft (DFG) im Rah­men des Sonder­for­schungsbereichs „Tran­siente Atmo­sphären­druck-Plas­men: von Plasmen zur Flüssig­keit zum Festkör­per (SFB 1316)“ geför­dert und profi­tierten unmit­telbar von Ar­beiten zu bak­teriellen Schutz­mecha­nismen im Kon­text ei­ner DFG-Sachbei­hilfe (BA 4193/7-1).

RUB / LK

 

Weitere Infos

Weitere Beiträge

 

 

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen