06.12.2011

Pointilismus in der Optikforschung

Schnelles Mikroskopieverfahren klärt in Sekunden aus Punktaufnahmen dynamische Prozesse in lebenden Zellen auf.

Seit holländische Brillenmacher um 1680 mit den ersten einfachen Mikroskopen winzige einzellige Tierchen und Bakterien entdeckten, streben Wissenschaftler danach, mit Hilfe immer raffinierterer Methoden den Geheimnissen des Lebens auf die Spur zu kommen. Dabei müssen sie immer aufs Neue die Grenzen der Technik bezwingen. So ist es Forschern in den letzten Jahren durch geschicktes Ausnutzen der Probeneigenschaften bereits gelungen das Abbe’sche Beugungslimit zu überwinden, demzufolge sich keine Details auflösen lassen, die kleiner als die halbe Wellenlänge des verwendeten Lichts sind.

Abb.: Dissoziation und Formierung von Gruppen von Podosomen in einer beweglichen Zelle. (a, b) Verbundene Podosome. (c) Getrennte Podosome verbinden sich. (Bild: S. Cox, Nat. Methods)

„Inzwischen gibt es einen ganzen Werkzeugkasten an hochauflösenden Methoden, die die Grundannahmen von Abbes Theorie umgehen. Sie beruhen entweder auf einer nichtproportionalen Probenantwort oder setzen vergleichbar mit dem Malstil des Pointillismus aus Einzelmolekülpositionen Bilder zusammen“, erläutert Rainer Heintzmann, Leiter der Abteilung Mikroskopie am Institut für Photonische Technologien (IPHT) in Jena.

Beim Pointillismus besteht das gesamte Bild aus sehr vielen kleinen Farbtupfern. Vergleichbar damit werden bei pointillistischen Mikroskopie-Verfahren wie Palm oder dStorm höchste Auflösungen erreicht, in dem man mit einem Farbstoff arbeitet, dessen Moleküle unter dem Mikroskop zu verschiedenen Zeiten zufällig aufblinken und so einzelne, dicht beieinander liegende Punkte sichtbar werden lassen. „Bisher war es allerdings nötig rund 10.000 Einzelbilder aufzunehmen, um daraus ein pointillistisches Gesamtbild einer Struktur errechnen zu können, was oft viele Minuten Aufnahmezeit in Anspruch nimmt“, sagt Physiker Heintzmann.

Susan Cox aus Heintzmanns Forschungsgruppe und Edward Rosten ist es nun gemeinsam mit britischen und amerikanischen Kollegen gelungen, eine Software zu entwickeln, mit der man nur noch rund 200 Videobilder für ein pointillistisches hochauflösendes Bild aufnehmen muss. Hierbei überlappen sich in jedem Einzelbild im Gegensatz zur herkömmlichen Methode viele Moleküle gegenseitig. So kann man nun innerhalb weniger Sekunden biologische Strukturen mit einer Auflösung von 50 Nanometern in lebenden Zellen abbilden. „Damit können wir nun erstmals wirklich lebende Prozesse in ganzen Zellen beobachten und verfolgen“, sagt Heintzmann.

Und das führte schon bei der Erprobung der neuen Software zu bemerkenswerten Erkenntnissen. Untersucht haben Heintzmann und sein Team die „Zellfüsschen“ (Podosomen) von Vorgängern menschlicher Fresszellen (Makrophagen). Makrophagen stehen an vorderster Front des Immunsystems, wenn es um die Abwehr von eindringenden Krankheitserregern geht. Ihre Podosomen sind aufgebaut aus einem Kern und einem diesen umgebenden Ring aus verschiedenen Eiweißen.

„Bisher glaubte man, dass dieser Ring mehr oder weniger rund ist und dass sich die Podosomen langsam über mehrere Minuten in ihrer Form verändern“, erklärt Heintzmann. „Dank der mit unserem neuen Verfahren entstandenen Bilder wissen wir nun, dass der Ring der Zellfüsschen eine vieleckige Struktur aus einzelnen Stäben und Gelenken hat und sich sehr dynamisch, etwa im Zehn-Sekunden-Takt, verändert.“

IPHT / PH

Veranstaltung

Spektral vernetzt zur Quantum Photonics in Erfurt

Spektral vernetzt zur Quantum Photonics in Erfurt

Die neue Kongressmesse für Quanten- und Photonik-Technologien bringt vom 13. bis 14. Mai 2025 internationale Spitzenforschung, Industrieakteure und Entscheidungsträger in der Messe Erfurt zusammen

Content-Ad

Park FX200 | Das fortschrittlichste AFM für 200-mm-Proben

Park FX200 | Das fortschrittlichste AFM für 200-mm-Proben

Das Park FX200 ist ideal für Forschung und Industrie zur automatisierten Messung von bis zu 200mm großen Proben und bietet bedeutende Fortschritte in der AFM-Technologie

Meist gelesen

Themen