07.02.2022

Protonradius im Nachhinein geschrumpft

Neue Analyse älterer Messungen des Protonradius zeigt, dass diese systematisch zu große Werte ergaben.

Vor einigen Jahren zeigte ein neuartiges Messverfahren, dass Protonen wohl kleiner sind als seit den 1990er Jahren angenommen. Dies überraschte die Fachwelt; manche Forscher glaubten sogar, das Standard­modell der Teilchenphysik müsse geändert werden. Physiker der Universität Bonn und der TU Darmstadt haben nun eine Methode entwickelt, mit der sie die Ergebnisse älterer und neuerer Experimente deutlich umfassender als bislang analysieren können. Damit ergibt sich auch aus den älteren Daten ein geringerer Protonenradius. Es gibt also wahrscheinlich keinen Unterschied zwischen den Werten – egal, auf welchem Mess­verfahren sie basieren.

 

Elektronen haben nach heutigem Kenntnisstand keine Ausdehnung, sondern sind punktförmig. Bei den positiv geladenen Protonen ist das anders. Ihr Radius beträgt aktuellen Messungen zufolge 0,84 Femtometer. Bis vor wenigen Jahren dachte man allerdings noch, sie seien 0,88 Femtometer groß – ein winziger Unterschied, der in der Fachwelt jedoch für erhebliche Furore sorgte. Denn er ließ sich nicht so einfach erklären. Manche Experten hielten ihn sogar für einen Hinweis darauf, dass das Standard­modell der Teilchen­physik falsch sei und abgeändert werden müsse. „Unsere Analysen deuten jedoch darauf hin, dass dieser Unterschied zwischen den alten und neuen Messwerten gar nicht existiert“, erklärt Ulf Meißner vom Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn. „Stattdessen waren die älteren Werte mit einem systematischen Fehler behaftet, der bislang deutlich unterschätzt wurde.“

Um den Radius eines Protons zu bestimmen, kann man es in einem Beschleuniger mit einem Elektronen­strahl beschießen. Wenn ein Elektron auf das Proton stößt, ändern beide ihre Bewegungs­richtung – ähnlich wie bei der Kollision zweier Billardkugeln. In der Physik bezeichnet man diesen Vorgang als elastische Streuung. Je größer das Proton, desto häufiger kommt es zu solchen Kollisionen. Aus Art und Ausmaß der Streuung lässt sich daher seine Ausdehnung berechnen.

Je höher dabei die Geschwindigkeit des Elektronenstrahls, desto genauere Messungen sind möglich. Allerdings steigt damit auch die Gefahr, dass Elektron und Proton beim Zusammenstoß neue Teilchen bilden. „Bei hohen Geschwindigkeiten oder Energien geschieht das immer häufiger“, erklärt Meißner, der auch Mitglied in den Trans­disziplinären Forschungsbereichen „Mathematik, Modellierung und Simulation komplexer Systeme“ und „Bausteine der Materie und fundamentale Wechselwirkungen“ ist. „Die elastischen Streuungs-Ereignisse werden im Gegenzug seltener. Daher hat man für Messungen der Protonengröße bislang nur Beschleuniger­daten verwandt, bei denen die Elektronen eine relativ geringe Energie hatten.“

Im Prinzip liefern aber auch Kollisionen, bei denen andere Teilchen entstehen, wichtige Einblicke in die Form des Protons. Das gilt ebenso für ein weiteres Phänomen, das bei hohen Geschwindigkeiten des Elektronen­strahls auftritt – die Elektron-Positron Vernichtung. „Wir haben eine theoretische Basis entwickelt, mit der sich auch solche Ereignisse für die Berechnung des Protonen­radius nutzen lassen“, sagt Hans-Werner Hammer von der TU Darmstadt. „Dadurch können wir Daten berücksichtigen, die bislang außen vor bleiben.“

Mit dieser Methode haben die Physiker die Messwerte aus älteren, aber auch ganz aktuellen Experimenten neu analysiert – inklusive denen, die bislang einen Wert von 0,88 Femtometern nahelegten. Mit ihrem Verfahren kamen die Forscher jedoch auf 0,84 Femtometer; das ist der Radius, der auch in neuen Messungen gefunden wurde, die auf einer ganz anderen Methodik basieren.

Das Proton scheint also tatsächlich rund fünf Prozent kleiner zu sein, als in den 1990er und 2000er Jahren angenommen wurde. Gleichzeitig erlaubt das Verfahren der Forscher auch neue Einblicke in die Feinstruktur von Protonen und ihrer ungeladenen Geschwister, der Neutronen. Es hilft uns also dabei, den Aufbau der Welt um uns herum etwas besser zu verstehen.

U. Bonn / DE

 

Weitere Infos

Weitere Beiträge

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen