19.04.2024

Quantenmessung für den Widerstand

Messmethode auf Basis des anomalen Quanten-Hall-Effekts verbessert Widerstandsmessungen ohne äußeres Magnetfeld.

In der industriellen Produktion oder in der Elektronik ist die präzise Messung des elektrischen Widerstands unerlässlich – zum Beispiel bei der Herstellung von Hightech-Sensoren, Mikrochips und Flugsteuerungen. „Hier kommt es auf exakte Daten an, denn schon kleinste Abweichungen können diese komplexen Systeme erheblich beeinträchtigen“, erklärt Charles Gould, Physiker am Institut für Topologische Isolatoren der Julius-Maximilians-Universität Würzburg (JMU). „Mit unserer neuen Messmethode können wir die Robustheit von Widerstandsmessungen ohne äußeres Magnetfeld mithilfe des anomalen Quanten-Hall-Effekts (QAHE) deutlich verbessern.“


Abb.: Bislang trat der anomale Quanten-Hall-Effekt bei einem Magnetfeld von...
Abb.: Bislang trat der anomale Quanten-Hall-Effekt bei einem Magnetfeld von Null nur bei sehr geringen Strömen auf. Dieses Gerät kann das ändern.
Quelle: K. Fijalkowski / JMU

Der klassische Hall-Widerstand, den man erhält, wenn man diese Spannung durch den Strom dividiert, steigt mit zunehmender Magnetfeldstärke. In dünnen Schichten und bei ausreichend großen Magnetfeldern beginnt dieser Widerstand, diskrete Stufen zu entwickeln. Dies wird als Quanten-Hall-Effekt bezeichnet, da der Widerstand nur von den fundamentalen Naturkonstanten abhängt, was ihn zu einem idealen Standardwiderstand macht.

Die Besonderheit des QAHE besteht darin, dass er den Quanten-Hall-Effekt bei einem Magnetfeld von Null ermöglicht. „Der Betrieb in Abwesenheit eines äußeren Magnetfeldes vereinfacht nicht nur das Experiment, sondern bietet auch einen Vorteil bei der Bestimmung einer anderen physikalischen Größe: des Kilogramms. Um das zu bestimmen, muss man gleichzeitig den elektrischen Widerstand und die Spannung messen“, sagt Gould, „aber die Messung der Spannung funktioniert nur ohne Magnetfeld, und dafür ist der QAHE ideal.“

Bislang wurde der QAHE nur bei Strömen gemessen, die für den praktischen messtechnischen Einsatz viel zu gering sind. Der Grund dafür ist ein elektrisches Feld, das den QAHE bei höheren Strömen stört. Die Würzburger Wissenschaftler haben nun eine Lösung für dieses Problem entwickelt. „Wir neutralisieren das elektrische Feld mit zwei getrennten Strömen in einer Geometrie, die wir Multi-Terminal-Corbino-Device nennen“, erklärt Gould. „Mit diesem neuen Trick bleibt der Widerstand bis zu größeren Strömen quantisiert, was den auf QAHE basierenden Widerstandsstandard robuster macht.“

In ihrer Machbarkeitsstudie konnten die Forscher nachweisen, dass die neue Messmethode mit der gleichen Präzision funktioniert wie die grundlegenden Gleichstromtechniken. Ihr nächstes Ziel ist es, die Praxistauglichkeit dieser Methode mit präziseren messtechnischen Mitteln zu testen. Zu diesem Zweck arbeitet die Würzburger Gruppe eng mit der Physikalisch-Technischen Bundesanstalt (PTB) zusammen, die sich auf diese Art von ultrapräziser Messtechnik spezialisiert hat. Gould: „Diese Methode ist nicht auf den QAHE beschränkt. Da der herkömmliche Quanten-Hall-Effekt bei ausreichend großen Strömen ähnlichen Beschränkungen unterliegt, kann diese Methode auch bestehende messtechnische Standards für Anwendungen verbessern, bei denen noch größere Ströme von Nutzen sind.“

JMU / DE

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen