Radius von Neutronensternen bestimmt
Messung liefert außerdem Wert der Hubble-Konstante, der mit kosmischem Mikrowellenhintergrund verträglich ist.
Ein internationales Wissenschaftsteam um den Astrophysikprofessor Tim Dietrich von der Universität Potsdam schaffte nun einen Durchbruch bei der Größenbestimmung eines typischen Neutronensterns und der Messung der Ausdehnung des Universums. Dazu kombinierten die Forscher Beobachtungsdaten von Neutronenstern-Kollisionen mit kernphysikalischen Berechnungen. Die „Multi-Messenger-Astronomie“ ist ein schnell wachsendes Forschungsgebiet. Von kollidierenden Neutronensternen können Astronomen die Eigenschaften von Materie bei sehr hohen Dichten ableiten. Beim Zusammenstoß von Neutronensternen werden die meisten schweren Elemente des Periodensystems gebildet, außerdem lässt sich aus den dabei abgegebenen Signalen die Expansionsrate des Universums messen.
Um den physikalischen Prozessen bei Zusammenstößen von Neutronensternen auf die Spur zu kommen, haben Wissenschaftler aus Deutschland, den Niederlanden, Schweden, Frankreich und den USA Beobachtungen dieser Kollisionen mit elektromagnetischen und Gravitationswellensignalen kombiniert. „Um astrophysikalische Informationen zum Zustand der Materie unter diesen extremen Bedingungen zu gewinnen, führen wir unsere Beobachtungen mit theoretischen kernphysikalischen Berechnungen zusammen. Mit unserer Methode konnten wir den Durchmesser eines typischen Neutronensterns auf rund 12 Kilometer bestimmen. Das entspricht der Größe einer Stadt, aber mit einer Masse von einer halben Million Erdmassen“, sagt Tim Dietrich, Professor für theoretische Astrophysik am Institut für Physik und Astronomie.
Außerdem nutzte das Forschungsteam die astrophysikalischen Informationen, um die Hubble-Konstante zu bestimmen. „In den letzten Jahren hat die Wissenschaftsgemeinschaft versucht, verschiedene Messungen dieser fundamentalen Konstante, welche die Ausdehnung des Universums beschreibt, zu vereinheitlichen. Mit unserem Ansatz konnten wir die Hubble-Konstante neu messen, und die Ergebnisse bestätigen die vorhergehende Messung anhand des kosmischen Mikrowellenhintergrunds“, fügt Ingo Tews hinzu, Wissenschaftler am Los Alamos National Laboratory und Koautor der Studie.
Ausgehend von theoretischen Überlegungen zur Kernmaterie in Neutronensternen analysierten die Forschenden astronomische Daten in einem mehrstufigen Prozess. „Wir berücksichtigten Massebestimmungen von Neutronensternen aus Radiobeobachtungen, Messungen eines schnell rotierenden Neutronensterns, sowie Beobachtungen von elektromagnetischen und Gravitationswellensignalen von kollidierenden Neutronensternen“, erklärt Tim Dietrich die Methoden. „Für letztere haben wir das gesamte Frequenzspektrum von Radiowellen bis zu Gammastrahlen untersucht.“ Der entwickelte Ablauf sei allgemeingültig und könne leicht erweitert werden, um in den nächsten Jahren eine wachsende Anzahl von Signalen zu berücksichtigen, fasst er zusammen.
U. Potsdam / DE