Reißverschlussverfahren in den Adern
Jülicher Forscher erklären Verhalten roter Blutkörperchen in Strömung
Jülicher Forscher erklären Verhalten roter Blutkörperchen in Strömung
Jülich, 30. März 2009 – Für das Strömungsverhalten des Blutes spielt der Gehalt an Blutkörperchen, auch Hämatokrit genannt, eine entscheidende Rolle. Wie Physiker des Forschungszentrums Jülich und der Universität Tokio mit Computersimulationen herausfanden, beeinflusst der Hämatokrit außerdem die Form und Anordnung der roten Blutkörperchen in Kapillargefäßen. Ihre Ergebnisse veröffentlicht die Fachzeitschrift „Proceedings of the National Academy of Sciences of the United States of America“ jetzt in ihrer Online-Ausgabe.
Mit ihrer Arbeit zeigen die Forscher beispielhaft, wie nützlich physikalisches Know-How auch für die Lebenswissenschaften ist. Rote Blutkörperchen sind die häufigsten Zellen im Blut von Wirbeltieren; jeder gesunde Erwachsene besitzt etwa 25 Billionen von ihnen. Sie transportieren den Sauerstoff auf ihrem Weg durch das Gefäßsystem und geben dem Blut seine rote Farbe. Unter dem Mikroskop in Ruhe betrachtet haben sie eine diskusähnliche Form. Wenn sie sich aber bewegen und durch unsere Adern und Äderchen oder auch durch künstliche Kapillaren in Laboren strömen, können sie auch andere Formen einnehmen. Physiker aus Jülich und Tokio haben untersucht, wie sich das Strömungsverhalten von Gruppen roter Blutkörperchen und in engen Kapillaren – nur wenig breiter als der Durchmesser der Zelle – in Abhängigkeit von ihrer Dichte verändert. Dies ist etwa für medizinische Untersuchungsmethoden von Interesse, bei denen Blutproben maschinell sortiert, gezählt und untersucht werden.
„Wir simulierten im Computer die Biege- und Schersteifigkeit der einzelnen Zelle, indem wir ein detailliertes physikalisches Modell für die Zellhaut und das darunter liegende Proteingerüst entwickelten“, erläutert Gerhard Gompper, Direktor am Jülicher Institut für Festkörperforschung. „Außerdem variierten wir Hämatokrit und Strömungsgeschwindigkeit. So konnten wir verschiedene Bedingungen miteinander vergleichen und sogar Zustände simulieren, die real gar nicht vorkommen. Das ist ein einzigartiger Vorteil von Simulationen.“
Und das passiert in den Blutgefäßen: Bei niedrigem Gehalt an Blutkörperchen biegen sich diese ab einer bestimmten Geschwindigkeit fallschirmförmig durch und ordnen sich hintereinander in der Mitte der Kapillare an, um den Strömungswiderstand zu minimieren. Bei höherer Dichte werden die durch Strömung vermittelten Kräfte wichtig. Diese bewegen einzelne Zellen leicht aus ihrer mittigen Position. Je mehr eine Zelle sich aber der Kapillarwand nähert, umso stärker wird sie abgebremst; die im kurzen Abstand nachfolgende Zelle rutscht seitlich daneben. Die Form der Blutkörperchen verändert sich dabei: Das Ergebnis sind zwei reißverschlussartig ineinander geschobenen Reihen pantoffelförmiger Zellen. Diese Anordnung roter Blutkörperchen wurde in menschlichen Blutgefäßen bereits 1969 erstmals beobachtet. Erstaunt hat die Forscher, dass der Strömungswiderstand bei diesem Übergang sprunghaft ansteigt – und damit auch die Pumpleistung, die das Herz aufbringen muss, um die gleiche Blutmenge durch die Kapillargefäße zu pressen. Die lineare Anordnung hätte bei gleichem Hämatokrit einen geringeren Strömungswiderstand, gleichwohl lässt sie sich nur künstlich im Computer erzeugen.
„Es hat 40 Jahre gedauert, bis Membranmodelle, Methoden zur Simulation von Strömungen und die notwendigen Rechenleistungen so weit entwickelt waren, dass solche Fragen im Computer („in silico“) untersucht werden können. Mit unserer Simulation konnten wir nun erstmals nachvollziehen, wie die Reißverschlussanordnung entsteht“, berichtet Gompper. Die Physiker wollen in Zukunft eine Vielzahl an Fragen untersuchen, etwa wie die Form der Kapillare oder krankheitsbedingte Veränderungen der Verformbarkeit der Blutkörperchen das Strömungsverhalten beeinflussen.
Forschungszentrum Jülich
Weitere Infos:
- Originalveröffentlichung:
J. L. Mc Whirter, H. Noguchi, G. Gompper: Flow-induced Clustering and Alignment of Vesicles and Red Blood Cells in Microcapillaries. PNAS Early Edition (EE), 14. Kalenderwoche, Manuskriptnummer 2008-11484R - Website IFF-2 „Theorie der weichen Materie und Biophysik“:
http://www.fz-juelich.de/iff/d_th2/
AL