Spin-Bahn-Effekt für Sterne
Magnetische Aktivität beeinflusst Umlaufzeit in Stern-Pulsar-Doppelsystem.
Pulsare lassen sich anhand der Bündel aus Radio- und Gammastrahlung beobachten, die sie wie kosmische Leuchttürme ins All senden. Forscher des Max-Planck-Instituts für Gravitationsphysik (Albert-
Abb.: Die magnetische Aktivität des Begleiters beeinflusst die Umlaufzeit im Doppelsternsystem. (Bild: Knispel / AEI / SDO / AIA / NASA)
0FGL J2339.8–0530 ist der Katalogname eines Himmelsobjekts, welches das Large Area Telescope (LAT) an Bord des Fermi Gamma-ray Space Telescope bereits im Jahr 2009 als Quelle intensiver Gammastrahlung identifizierte. Beobachtungen in anderen Wellenlängenbereichen in den Folgejahren legten nahe, dass sich dahinter ein Millisekundenpulsar verbirgt, der mit einem Begleitstern den gemeinsamen Schwerpunkt in etwa 4,6 Stunden umrundet.
Erst im Jahr 2014 konnte man den Pulsar als „PSR J2339–0533“ anhand seiner Radiostrahlung nachweisen. Die Beobachtung im Radiobereich wird dadurch erschwert, dass der Pulsar mit seinem Begleitstern wechselwirkt – er erhitzt seinen Begleiter und verdampft ihn dadurch. So ist das Doppelsternsystem von Gaswolken erfüllt, die die Radiostrahlung absorbieren und den Pulsar zeitweise unsichtbar machen. Um das System vollständig zu charakterisieren, wären regelmäßige Beobachtungen über mehrere Jahre notwendig.
Die Gammastrahlung von PSR J2339–0533 hingegen durchdringt die Gaswolken und erlaubt so dessen Untersuchung. „Die vom Fermi-LAT registrierten Ankunftszeiten der einzelnen Gammaphotonen hängen von den physikalischen Eigenschaften der Sterne und ihrer Bahnen ab“, erläutert Holger Pletsch, Leiter einer unabhängigen Forschungsgruppe am AEI.
Im Umkehrschluss lässt sich aus der Analyse der Ankunftszeiten eine präzise Vermessung der Doppelsternsystems konstruieren. „Nach den ersten Radiobeobachtungen hatten wir einen Ansatzpunkt, anhand der umfangreichen Fermi-
Entscheidend war dabei der Einsatz neuer Analyse-Algorithmen. „Im Gegensatz zu bisherigen Verfahren, die stets die Ankunftszeiten mehrerer Gammaphotonen mitteln und so zeitliche Auflösung verlieren, basiert unsere Methode auf den Ankunftszeiten einzelner Photonen“, sagt Colin Clark, Doktorand in Pletschs Arbeitsgruppe. „Dadurch können wir die physikalischen Eigenschaften des Doppelsternsystems noch genauer ermitteln, vor allem Effekte auf kürzeren Zeitskalen.“
Die Ergebnisse von Pletsch und Clark liefern eine genaue Vermessung von PSR J2339–0533, seinem Begleiter und ihren Bahnen umeinander. Es handelt sich um die erste hochpräzise Vermessung eines solchen wechselwirkenden Doppelsternsystems mittels der Gammastrahlung eines Millisekundenpulsars. Die Forscher reizen dabei die Zeitauflösung des Fermi-LAT, die etwa bei Mikrosekunden liegt, aufs Äußerste aus.
Die Ergebnisse zeigen eine überraschende Schwankung der Umlaufzeit. „Wir waren erstaunt, dass die Umlaufzeit langsam nach oben und unten um den Mittelwert von 4,6 Stunden schwankt. Die Änderungen liegen in der Größenordnung von wenigen Millisekunden, was verglichen mit der Messgenauigkeit von Mikrosekunden aber enorm viel ist“, sagt Clark. „Das ist so, als würde die Jahreslänge auf der Erde um ein Dutzend Sekunden schwanken.“
Als wahrscheinlichste Ursache erachten die Wissenschaftler winzige Veränderungen in der Form des Begleitsterns, die durch dessen magnetische Aktivität hervorgerufen werden. Ähnlich wie unsere Sonne durchläuft der Begleiter demnach Aktivitätszyklen. Das dabei schwankende Magnetfeld wechselwirkt mit dem Plasma im Sterninneren und verformt ihn. Mit der Form des Sterns ändert sich auch sein Gravitationsfeld, was wiederum die Bahn des Pulsars beeinflusst und die beobachteten Schwankungen der Umlaufzeit erklärt.
„In der Zukunft kann die Kombination von weiteren Beobachtungen mit optischen Teleskopen uns helfen, den Zusammenhang zwischen Sternaktivität und Schwankungen der Umlaufzeit zu belegen“, sagt Pletsch. Diese könnte außerdem zum besseren Verständnis des Doppelsternsystem beitragen. „Die Fermi-LAT-Beobachtungen des Pulsars lassen uns gewissermaßen in das Innere des Begleitsterns blicken. Vielleicht lässt sich damit zukünftig sogar die Art des Magnetfeld-
AEI / DE