Starke Aktoren aus Formgedächtnislegierungen
Prototypen können große Kräfte bei geringer Baugröße erstmals schnell schalten.
Viele Anwendungen etwa im Werkzeug- und Maschinenbau benötigen Aktoren, um elektrische Signale in mechanische Bewegungen umsetzen zu können. Sind dabei große Kräfte bei geringem Bauraum erforderlich, haben Aktoren aus thermischen Formgedächtnislegierungen bereits heute die Nase vorn. Einziges Manko ist ihr schlechtes Abkühlverhalten und die damit einhergehende geringe Dynamik. Nun haben drei Fraunhofer-Institute eine neue Klasse von Hochlast-Formgedächtnis-Aktoren entwickelt. Diese können große Kräfte, bei geringer Baugröße erstmals hochdynamisch schalten.
Im kürzlich abgeschlossenen Forschungsprojekt HochPerForm hat ein Team vom Fraunhofer-Institut für Physikalische Messtechnik IPM, vom Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU und vom Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM kompakte, hochdynamische Hochlastaktoren auf Basis thermischer Formgedächtnislegierungen (FGL) entwickelt. Diese neuartigen Aktoren sind bei einem Durchmesser von nur fünfzehn Millimetern und einer Länge von sechzehn Millimetern in der Lage, eine Masse von einer halben Tonne um bis zu 200 Mikrometer anzuheben. Dank eines innovativen Peltier-Temperiersystems können die Aktoren mit mehr als 0,3 Hertz geschaltet werden. Zur Ansteuerung werden lediglich zwei Kabel benötigt, die mit einer dezentralen, kostengünstigen Regelelektronik verbunden sind.
Zunächst wurden einzelne Teilfunktionsmuster entwickelt, um die drei zentralen Fragestellungen des Projektes zu beantworten. Erstens: Wie kann der Bauraum eines FGL-Hochlastaktors minimiert werden? Zweitens: Wie gelingt die schnelle Temperierung des entwickelten Aktors? Und drittens: Können die benötigten FGL-Komponenten additiv gefertigt werden? Aufbauend auf den gewonnenen Erkenntnissen entwickelte das Team einen FGL-Hochlastaktor, der dank einer additiv gefertigten FGL-Komponente und einer leistungsfähigen Temperierung ein deutlich verbessertes Eigenschaftsprofil aufweist. Anhand eines Funktionsdemonstrators konnte gezeigt werden, dass sich die neuen Hochlastaktoren ideal beispielsweise für die Feinpositionierung von Bauteilen in Produktionsmaschinen eignen und für Anwendungen prädestiniert sind, die große Halte- bzw. Spannkräfte erfordern.
Zur schnellen Kühlung eines FGL-Hochlastaktors hat ein Team von Fraunhofer IPM zwei Ansätze verfolgt: zum einen schaltbare Heatpipes, zum anderen runde thermoelektrische Module. Insbesondere mit dem zweiten Ansatz war es möglich, hohe Dynamiken bei geringer Systemgröße zu erreichen. Das eröffnet im Hinblick auf Kompaktheit, Regelbarkeit und Einfachheit völlig neue Einsatzmöglichkeiten für FGL-Aktoren. Der Basis-FGL-Hochlastaktor wurde am Fraunhofer IWU entwickelt. Er besteht neben der FGL-Komponente, die als Energiewandler fungiert, aus einem ausgeklügelten Vorspannsystem. Bei der Entwicklung wurde ein Baukastenprinzip realisiert, das es erlaubt, FGL-Hochlastaktoren kundenspezifisch auf die jeweiligen Anforderungen anzupassen.
Die Geometriefreiheit und Verfügbarkeit von Formgedächtniskomponenten war bisher ein Manko der FGL-Hochlastaktorik. Am Fraunhofer IFAM ist es gelungen, dieses Problem durch die additive Fertigung maßgeschneiderter FGL-Bauteile zu lösen. Dank der großen Erfahrung des Fraunhofer IFAM konnten zudem die Funktionseigenschaften wie Hysterese und Degradation durch pulverbettbasiertes Laserstrahlschmelzen (L-PBF) deutlich verbessert werden.
Fh.-IPM / JOL