17.03.2010

Starke Transistoren aus organischem Molekül

Mit einem neu entwickelten Molekül lassen sich leistungsstarke organische Dünnfilm-Transistoren für die Mikroelektronik herstellen.


Mit einem neu entwickelten Molekül lassen sich leistungsstarke organische Dünnfilm-Transistoren für die Mikroelektronik herstellen.

Weltweit wird an Transistoren aus organischen Materialien geforscht, die sich als hauchdünne Schichten in elektronische Bauteile einbringen lassen. Transistoren sind Bestandteile elektronischer Schaltungen, die in der Nachrichtentechnik oder in Computern eingesetzt werden. Organische Dünnfilm-Transistoren sind heute zwar bei weitem nicht so leistungsfähig wie Silizium-Transistoren. Dafür bieten sie die Möglichkeit, kostengünstig auf flexiblen Unterlagen und großen Flächen angewandt zu werden. So lassen sich biegsame Bauteile und damit neue Anwendungen realisieren - zum Beispiel flexible Displays. Gemeinsam mit Forschern der BASF hat der Würzburger Chemiker Frank Würthner ein neues viel versprechendes organisches Molekül entwickelt: Octachlorperylendiimid.


 

Abb. 1: Neu entwickelt von Chemikern der BASF SE und der Universität Würzburg: das Molekül Octachlorperylendiimid. Es ergibt einen leistungsstarken organischen Dünnfilm-Transistor. (Bild: Marcel Gsänger)

 

Bei Tests an der Universität Stanford (USA) erwies sich das neue Molekül als besonders leistungsfähig und luftstabil. Damit eignet es sich gut für die Vakuum prozessierte Herstellung elektronischer Schaltungen. Gut funktionierende organische Transistoren für den Transport von p-Ladungsträgern gibt es schon viele. Eine Herausforderung stellt aber der Transport von n-Ladungsträgern dar. "Ein geeigneter Ersatz von acht Wasserstoffatomen war hier die entscheidende Maßnahme. Hierdurch werden die Moleküle elektronenärmer und somit viel stabiler an der Luft", erklärt Martin Könemann von der BASF SE. Das neue Transistormaterial funktioniert nach 20 Monaten an der Luft immer noch gut. Das ist bemerkenswert, weil organische Transistoren oft durch Sauerstoff angegriffen und beschädigt werden.

Abb. 2: Octachlorperylendiimid-Moleküle sind in sich leicht geknickt und ordnen sich daher an wie in der rechten Zeichnung. Die weitgehende Überlappung im Verbund ist ein Grund für die verbesserten Eigenschaften als organischer Dünnfilm-Transistor. (Bild: Marcel Gsänger)

Die verbesserten Eigenschaften sind auch bedingt durch die Anordnung der Moleküle im Festkörper: Wird das Material auf einen Trägerstoff aufgedampft, lagert es sich dort in Schichten ab. Darin ordnen sich die einzelnen Moleküle automatisch zu einem backsteinartigen Verbund an. In diesem Verbund überlappen sich die Moleküle weitgehend. Dabei bilden sie so genannte Wasserstoff-Brücken untereinander aus; weitere erwünschte Wechselwirkungen kommen dazu. All das führt laut Würthner zur erhöhten Beweglichkeit für Elektronen und zur verstärkten Widerstandsfähigkeit gegen Sauerstoff-Attacken.

Julius-Maximilians-Universität Würzburg


Weitere Infos

AL

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen