06.02.2013

Stillhalten war gestern

Ein neu entwickeltes Röntgenmikroskop macht sogar schnelle Änderungen in Materialien sichtbar.

Mikroskopie mit Röntgenstrahlen erfordert eine extrem hohe Qualität der Strahlung. Auch Gerät und Probe dürfen sich während der Aufnahme nicht im Geringsten bewegen. Forscher der Technischen Universität München und des Paul Scherrer Instituts in Villigen (Schweiz), haben nun eine Methode entwickelt, mit der man diese Einschränkungen lockern kann. Mit ihr lassen sich sogar Fluktuationen im Material abbilden. Über ihre Ergebnisse berichtet jetzt das Fachmagazin Nature.

IMAGE

Abb.: Ein Schema des experimentellen Aufbaus. Röntgenstrahlen werden gebündelt und treffen auf ein Testobjekt, das mit Nanometer-Präzision durch den Strahl bewegt wird. Die gestreuten Röntgenstrahlen werden von einem Detektor aufgefangen. Derartige Streubilder werden dann zu einem Bild der Probe 'rekonstruiert'. (Bild: TU München / PSI)

Seit mehr als 100 Jahren heißt es bei jeder Röntgenaufnahme: Stillhalten! Will man Nanostrukturen wie den Aufbau biologischer Zellen, die poröse Struktur von Zement oder Speicherfelder magnetischer Datenträger abbilden, müssen Probe und Röntgenmikroskop daher extrem vibrationsarm sein. Zusätzlich wählen spezielle Filter aus der ankommenden Röntgenstrahlung den Anteil mit den richtigen Eigenschaften aus– zum Beispiel die richtige Wellenlänge.

Andreas Menzel vom PSI und Pierre Thibault von der TU München haben nun eine Analysemethode entwickelt, die trotz Vibrationen oder Fluktuationen zuverlässige Bilder produziert. Die Methode basiert auf einer Technik namens „Ptychographie“. Sie wurde in den 1960er Jahren für die Elektronenmikroskopie entwickelt. Durch die Ergebnisse der Forscher lassen sich nun in einem Bild Effekte voneinander unterscheiden, die von den Lichtanteilen verschiedener Wellenlängen stammen.

Damit ist es möglich, eine ganze Klasse von Objekten abzubilden, die sich bisher kaum untersuchen ließ. „Wir können nicht nur Vibrationen im Mikroskop kompensieren“, sagt Andreas Menzel. „Wir können sogar Fluktuationen der Probe selber charakterisieren, auch wenn sie viel zu schnell sind, als dass wir sie mit einzelnen Momentaufnahmen festhalten könnten.“

Die neue Methode verbindet die Charakterisierung dynamischer Zustände mit hochauflösender Röntgenmikroskopie. Eine mögliche Anwendung besteht darin, die wechselnde Magnetisierung einzelner Bits in magnetischen Speichermedien mit hoher Speicherdichte zu untersuchen. Sichtbar gemacht werden können auch Wechselwirkungen einzelner magnetischer Bits oder ihre thermischen Fluktuationen, die letztlich die Lebensdauer magnetischer Datenspeicherung bestimmen.

„Neben dem Einsatz in bildgebenden Verfahren hat unsere Analyse aber auch eine grundlegende Verwandtschaft zu anderen Fachbereichen offenbart“,  erläutert Pierre Thibault. „Mikroskopie und Wissenschaftsdisziplinen, wie zum Beispiel Quanteninformatik, die bisher als unabhängig galten, können hierbei voneinander profitieren.“

TU München / AH

Weitere Infos


Anbieter des Monats

Edmund Optics GmbH

Edmund Optics GmbH

With over 80 years of experience, Edmund Optics® is a trusted provider of high-quality optical components and solutions, serving a variety of markets including Life Sciences, Biomedical, Industrial Inspection, Semiconductor, and R&D. The company employs over 1.300 people across 19 global locations and continues to grow.

Content Ad

Double-Pass AOM Clusters

Double-Pass AOM Clusters

Versatile opto-mechanical units that enable dynamic frequency control and amplitude modulation of laser light with high bandwidth, that can be combined with beam splitters, monitor diodes, shutters and other multicube™ components.

Meist gelesen

Themen