Supernova-Kernsynthese im Labor
ISOLTRAP-Kollaboration misst Neutronen-Schalenübergänge bei Cadmiumisotopen.
Einem internationalen Wissenschaftlerteam ist es erstmals gelungen, die Bindungsenergien von Atomkernen der exotischen Cadmiumisotope 129Cd, 130Cd und 131Cd massenspektrometrisch zu bestimmen. Die kurzlebigen Teilchen mit Halbwertszeiten von Sekundenbruchteilen wurden am Ionenseparator ISOLDE des europäischen Forschungszentrum CERN hergestellt und mit einer Penningionenfalle bzw. einem Multireflexions-
Abb.: Dinko Atanasov (rechts) und Frank Wienholtz (Universität Greifswald) auf der obersten Plattform der dreistöckigen ISOLTRAP-Apparatur in der ISOLDE-Experimentierhalle am CERN (Bild: M. Mougeot)
Bis etwa zum Eisen können die Atomkerne im Innern der Sterne bei Fusionsprozessen heranwachsen. Darüber wird es komplizierter, da beim Aufbau schwererer Kerne nicht etwa Energie freigesetzt, sondern in die Ausgangskerne hineingesteckt werden muss. Explosive Sternprozesse – wie zum Beispiel Supernovae oder das Zusammentreffen von Neutronensternen und schwarzen Löchern – können die benötigten Energien zur Verfügung stellen. Dabei werden Neutronen an den Ausgangskernen angelagert. Der so erzeugte Neutronenüberschuss führt im Allgemeinen zum Betazerfall. Wo und wie diese Prozesse stattfinden, ist allerdings noch unklar und Gegenstand aktueller Forschung der nuklearen Astrophysik. In diesem Zusammenhang sind experimentelle Daten über die involvierten, teils extrem kurzlebigen Kerne von großem Interesse.
Nun ist es Forschern der ISOLTRAP-
Ähnlich wie die Elektronen in der Atomhülle befinden sich auch die Protonen und Neutronen, aus denen der Atomkern besteht, auf bestimmten energetischen Schalen. Immer dann, wenn eine solche Schale gerade vollständig aufgefüllt ist, ist der Atomkern besonders stabil. In diesem Zusammenhang spricht man von magischen Protonen bzw. Neutronenzahlen. Eine solche magische Neutronenzahl ist auch N=82. Da Cadmiumkerne 48 Protonen haben, findet man für dieses Element also bei der Massenzahl A=Z + N=130 eine besondere Konfiguration der Neutronen. Aufgrund der erhöhten Stabilität der Kerne mit magischen Zahlen werden gerade sie in den explosionsartigen Sternphasen besonders oft gebildet, sodass ihr Vorkommen trotz der ständigen Umwandlungsprozesse erhöht ist. Man nennt sie aufgrund ihres erhöhten Vorkommens auch Wartepunkt-Kerne. Später, das heißt nach dem Abklingen der Sternexplosion, wandeln sich die Wartepunkt-
Bisher kannte man lediglich die Kernmasse von 130Cd, wobei diese jedoch auch nur indirekt aus Kernreaktionswerten abgeleitet war. Die Massen der Nachbarisotope 129Cd und 131Cd waren noch gar nicht gemessen. Der ISOLTRAP-
Für die Isotope 129Cd und 130Cd, die nicht nur länger leben, sondern auch mit Raten von über tausend Teilchen pro Sekunde hergestellt werden konnten, wurde das Flugzeitmassenspektrometer zur Selektion der Cadmiumisotope aus dem Gemisch der häufiger erzeugten Isobaren eingesetzt. Darunter versteht man Atomkerne mit fast gleicher Masse. Sie haben die gleiche Gesamtnukleonenzahl, unterscheiden sich aber im jeweiligen Anteil der Z Protonen und N Neutronen. Das Multireflexions-
Nur so konnten die Forscher die magische Neutronenzahl dann auch überschreiten. Dies ist insofern von großer Bedeutung, da erst damit der energetische Abstand zwischen der gefüllten und der darauf folgenden Neutronenschale bestimmt werden konnte, in der ja nun ein erstes Neutron eingelagert ist. Man kennt nun also die Energie, die notwendig ist, um das zusätzliche Neutron vom 131Cd zu entfernen und so wieder zu dem stabileren 130Cd zu gelangen. Wie erwartet zeigte sich, dass der energetische Schalenabstand beim Cadmium kleiner ausfällt als beim schon bekannten Zinn. Dieses Element hat nämlich zusätzlich auch eine magische Protonenzahl (Z=50), während beim Cadmium (Z=48) die Protonenschale noch nicht abgeschlossen ist. Der erhöhte Neutronenschalen-Energieabstand beim Zinn ist eine Folge davon, dass sich die N- bzw. Z-Schaleneffekte gegenseitig verstärken – wie von der ISOLTRAP-
U. Greifswald / DE