08.12.2015

Supernova-Kernsynthese im Labor

ISOLTRAP-Kollaboration misst Neutronen-Schalenübergänge bei Cadmiumisotopen.

Einem internationalen Wissenschaftlerteam ist es erstmals gelungen, die Bindungsenergien von Atomkernen der exotischen Cadmiumisotope 129Cd, 130Cd und 131Cd massenspektrometrisch zu bestimmen. Die kurzlebigen Teilchen mit Halbwertszeiten von Sekundenbruchteilen wurden am Ionenseparator ISOLDE des europäischen Forschungszentrum CERN hergestellt und mit einer Penningionenfalle bzw. einem Multireflexions-Flugzeitspektrometer vermessen. Die Resultate bestätigen die erwartete magische Neutronenzahl N=82 und sind von großer Bedeutung für Simulationsrechnungen zum Verständnis der Herkunft der chemischen Elemente im Bereich von Zinn bis Barium, die im Sonnensystem vergleichsweise häufig auftreten.

Abb.: Dinko Atanasov (rechts) und Frank Wienholtz (Universität Greifswald) auf der obersten Plattform der dreistöckigen ISOLTRAP-Apparatur in der ISOLDE-Experimentierhalle am CERN (Bild: M. Mougeot)

Bis etwa zum Eisen können die Atomkerne im Innern der Sterne bei Fusionsprozessen heranwachsen. Darüber wird es komplizierter, da beim Aufbau schwererer Kerne nicht etwa Energie freigesetzt, sondern in die Ausgangskerne hineingesteckt werden muss. Explosive Sternprozesse – wie zum Beispiel Supernovae oder das Zusammen­treffen von Neutronen­sternen und schwarzen Löchern – können die benötigten Energien zur Verfügung stellen. Dabei werden Neutronen an den Ausgangskernen angelagert. Der so erzeugte Neutronen­überschuss führt im Allgemeinen zum Betazerfall. Wo und wie diese Prozesse stattfinden, ist allerdings noch unklar und Gegenstand aktueller Forschung der nuklearen Astrophysik. In diesem Zusammenhang sind experimentelle Daten über die involvierten, teils extrem kurzlebigen Kerne von großem Interesse.

Nun ist es Forschern der ISOLTRAP-Kollaboration mit Mitgliedern des CERN, des Max-Planck-Instituts für Kernphysik in Heidelberg, des Helmholtz­zentrums für Schwerionen­forschung in Darmstadt sowie von Universitäten in Dresden, Greifswald, Istanbul (Türkei), Manchester und Paris-Sud gelungen, wichtige experimentelle Bausteine für die Simulationen möglicher Szenarien der Nukleosynthese beizusteuern. Diese Eingangsdaten wurden daraufhin von Theoretikern des Instituts für Astronomie und Astrophysik der Freien Universität Brüssel und des Max-Planck-Institut für Astrophysik in Garching für die solche Simulationen der Kernreaktionen aufgegriffen.

Ähnlich wie die Elektronen in der Atomhülle befinden sich auch die Protonen und Neutronen, aus denen der Atomkern besteht, auf bestimmten energetischen Schalen. Immer dann, wenn eine solche Schale gerade vollständig aufgefüllt ist, ist der Atomkern besonders stabil. In diesem Zusammenhang spricht man von magischen Protonen bzw. Neutronenzahlen. Eine solche magische Neutronenzahl ist auch N=82. Da Cadmiumkerne 48 Protonen haben, findet man für dieses Element also bei der Massenzahl A=Z + N=130 eine besondere Konfiguration der Neutronen. Aufgrund der erhöhten Stabilität der Kerne mit magischen Zahlen werden gerade sie in den explosionsartigen Sternphasen besonders oft gebildet, sodass ihr Vorkommen trotz der ständigen Umwandlungs­prozesse erhöht ist. Man nennt sie aufgrund ihres erhöhten Vorkommens auch Wartepunkt-Kerne. Später, das heißt nach dem Abklingen der Sternexplosion, wandeln sich die Wartepunkt-Kerne über Betazerfälle in den oben genannten Bereich des periodischen Systems der Elemente um – mit dem gehäuften Auftreten bei Massenzahlen um A=130.

Bisher kannte man lediglich die Kernmasse von 130Cd, wobei diese jedoch auch nur indirekt aus Kernreaktionswerten abgeleitet war. Die Massen der Nachbarisotope 129Cd und 131Cd waren noch gar nicht gemessen. Der ISOLTRAP-Kollaboration gelang dies nun mit Hilfe eines an der Universität Greifswald gebauten Multi­reflexions-Flugzeit­massen­spektrometers. Es wurde dafür in zwei unterschiedlichen Anwendungsmodi betrieben, die schon vor kurzem bei anderen Experimenten erfolgreich eingesetzt werden konnten.

Für die Isotope 129Cd und 130Cd, die nicht nur länger leben, sondern auch mit Raten von über tausend Teilchen pro Sekunde hergestellt werden konnten, wurde das Flugzeit­massen­spektrometer zur Selektion der Cadmiumisotope aus dem Gemisch der häufiger erzeugten Isobaren eingesetzt. Darunter versteht man Atomkerne mit fast gleicher Masse. Sie haben die gleiche Gesamtnukleonenzahl, unterscheiden sich aber im jeweiligen Anteil der Z Protonen und N Neutronen. Das Multi­reflexions-Flugzeit­massen­spektrometers von ISOLTRAP konnte die gewünschten 129Cd- und 130Cd-Kerne aus dem Isobarengemisch herausfischen und damit für die Massenspektrometrie in einer Penningionenfalle vorbereiten. Beim Isotop 131Cd war die Produktionsrate allerdings etwa eine Größenordnung kleiner und reichte daher in der gegebenen Experimentierzeit für die Penningfallen-Untersuchung nicht aus. Hier kam das Multireflexions-Flugzeitmassenspektrometer selbst bei der Massenbestimmung zum Zuge. Es ist zwar mit „nur“ etwas besser als ein Millionstel an Unsicherheit nicht ganz so genau wie die Penningfalle, dafür kann man die Messung aber schneller und mit weniger Teilchen durchführen.

Nur so konnten die Forscher die magische Neutronenzahl dann auch überschreiten. Dies ist insofern von großer Bedeutung, da erst damit der energetische Abstand zwischen der gefüllten und der darauf folgenden Neutronenschale bestimmt werden konnte, in der ja nun ein erstes Neutron eingelagert ist. Man kennt nun also die Energie, die notwendig ist, um das zusätzliche Neutron vom 131Cd zu entfernen und so wieder zu dem stabileren 130Cd zu gelangen. Wie erwartet zeigte sich, dass der energetische Schalenabstand beim Cadmium kleiner ausfällt als beim schon bekannten Zinn. Dieses Element hat nämlich zusätzlich auch eine magische Protonenzahl (Z=50), während beim Cadmium (Z=48) die Protonenschale noch nicht abgeschlossen ist. Der erhöhte Neutronenschalen-Energieabstand beim Zinn ist eine Folge davon, dass sich die N- bzw. Z-Schaleneffekte gegenseitig verstärken – wie von der ISOLTRAP-Kollaboration erst kürzlich auch beim Element Calcium bei einer kleineren magischen Neutronenzahl beobachtet.

U. Greifswald / DE

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen