Symmetrie der Raumzeit mit Atomuhren getestet
Vergleich zweier optischer Atomuhren bestätigt eine Grundannahme der Relativitätstheorie.
Eine der Grundannahmen von Einsteins Relativitätstheorie besagt, dass die Lichtgeschwindigkeit in alle Raumrichtungen gleich ist. Experimentell wurde dies von Michelson und Morley schon 1887 mit einem drehbar gelagerten Interferometer gezeigt, das die Lichtgeschwindigkeit entlang zweier senkrecht zueinander stehender optischer Achsen vergleicht. Nun kann man fragen: Gilt diese nach Hendrik Antoon Lorentz benannte Symmetrie des Raumes auch für die Bewegung materieller Teilchen, oder gibt es Richtungen, entlang derer sie sich bei gleicher Energie schneller oder langsamer bewegen? Insbesondere für hohe Energien der Teilchen sagen theoretische Modelle der Quantengravitation eine Verletzung der Lorentz-Symmetrie vorher.
Mit zwei Atomuhren wurde jetzt ein Experiment durchgeführt, um diese Fragestellung mit hoher Präzision zu untersuchen. Die Frequenz dieser Atomuhren wird jeweils von der Resonanzfrequenz eines einzelnen, in einer Falle gespeicherten Ytterbiumions gesteuert. Während die Verteilung der Elektronen des Yb+-Ions im Grundzustand kugelsymmetrisch ist, befinden sich die Elektronen im angeregten Zustand in einer deutlich elongierten Wellenfunktion und bewegen sich damit hauptsächlich entlang einer Raumrichtung. Die Ausrichtung der Wellenfunktion wird durch ein in der Uhr angelegtes Magnetfeld bestimmt und wurde für beide Uhren etwa senkrecht zueinander gewählt.
Die Uhren sind im Labor fest montiert und drehen sich gemeinsam mit der Erde einmal pro Tag – exakt einmal in 23,9345 Stunden – relativ zu den Fixsternen. Eine Abhängigkeit der Elektronengeschwindigkeit von der Orientierung im Raum würde sich daher als periodisch mit der Erdrotation auftretende Frequenzdifferenz zwischen beiden Atomuhren zeigen. Um einen solchen Effekt klar von möglichen technischen Einflüssen unterscheiden zu können, wurden die Frequenzen der Yb+-Uhren über mehr als tausend Stunden verglichen. Es wurde dabei keine Veränderung der Uhren zueinander für den zugänglichen Bereich von Periodendauern von wenigen Minuten bis zu 80 Stunden beobachtet.
Für die theoretische Interpretation und Rechnungen zur Atomstruktur des Yb+-Ions hat das PTB-Team mit theoretischen Physikern von der Universität von Delaware zusammengearbeitet. Die aktuellen Resultate verbessern diejenigen von Forschern der Universität Berkeley aus dem Jahr 2015 mit Kalziumionen um etwa einen Faktor hundert. Im Mittel über die gesamte Messzeit zeigten beide Uhren eine relative Frequenzabweichung von weniger als 3 × 10–18. Dies bestätigt die vorher abgeschätzte systematische Unsicherheit der Uhren von 4 × 10–18 und ist ein wichtiger Fortschritt in der Charakterisierung von optischen Atomuhren auf diesem Genauigkeitsniveau. Potenziell zeigen diese Uhren erst nach etwa zehn Milliarden Jahren eine Differenz von einer Sekunde an.
PTB / JOL