Trockeneis auf 67P/Churyumov-Gersimenko
Rosetta-Mission findet Hinweise auf einen saisonalen Zyklus für Kohlendioxid.
Ende September diesen Jahres kam die Rosetta-Mission mit dem spektakulären Aufsetzen ihres Orbiters auf der Oberfläche des Kometen 67P/Churyumov-Gersimenko zum Ende ihrer Beobachtungsphase. Bis zu diesem Zeitpunkt hatte sie nach 4595 Tagen im All 7,9 Milliarden Kilometer zurückgelegt, sechs Vorbeiflüge an der Erde, am Mars und zwei Asteroiden absolviert und in einer mehr als zweijährigen Kampagne den Kometen 67P/Churyumov-Gerasimenko auf seiner Reise durchs Sonnensystem begleitet und mit elf wissenschaftlichen Experimenten sowie mit einem 2014 bereits gelandeten Roboter Philae untersucht. Eine der Entdeckungen, an der auch zehn Wissenschaftler des Deutschen Zentrums für Luft- und Raumfahrt DLR beteiligt waren, basiert auf Daten des Spektrometers VIRTIS (Visible and Infrared Imaging Spectrometer). Die Forscher entdeckten kurzzeitig erscheinendes Trockeneis in bestimmten Oberflächenbereichen des Kometen, denen die Entstehung zweier ungewöhnlicher großer Wassereisaufschlüsse folgte.
„Erstmals konnte Trockeneis anhand von eindeutigen spektralen Eigenschaften innerhalb eines größeren Fleckens von etwa 80 mal 60 Meter im Gebiet Anhur auf der Oberfläche eines Kometen nachgewiesen werden“, berichtet Gabriele Arnold, die die Arbeiten von VIRTIS in Deutschland koordiniert. Diese Beobachtung erfolgte an zwei aufeinander folgenden Tagen Ende März 2015, als der Komet nahe an der Sonne und sehr aktiv war. Zu dieser Zeit wurde die südliche Hemisphäre des Kometen beleuchtet, die in der Anfangsphase der Beobachtungskampagne wegen der kometaren Jahreszeit im Dunklen lag. Die Messungen zeigen, dass der beobachtete Fleck aus einer Mischung weniger Prozente an Trockeneis mit dem allgegenwärtigen dunklen organischen Krustenmaterial nicht flüchtiger Materialkomponenten besteht.
„Obwohl dieses Trockeneis eine häufige Komponente des Kometeninneren ist, wurde es bisher nicht auf einer Kometenoberfläche gefunden", erläutert Gabriele Arnold. „Verantwortlich hierfür ist seine geringe Verdampfungstemperatur, die deutlich unter der des Wassereises liegt und dazu führt, dass es nach seinem Aufschluss unmittelbar sublimiert, also verdampft.“ Eine Untersuchung des gleichen Gebietes nach drei Wochen ergab deshalb auch das vollständige Verschwinden des Trockeneises. Modellrechnungen zeigen, dass der entdeckte Bereich mit der Trockeneis-Schicht bei einer Dicke von etwa neun Zentimetern 57 Kilogramm Kohlendioxid enthalten haben musste. Nach dem Verschwinden des Trockeneises beobachtete die OSIRIS-Kamera an Bord von Rosetta anhand stärkerer Blau-Anteile des rückgestreuten Lichts im April 2015 dort zwei große Flecken mit Wassereis, wo zuvor das Kohlendioxid verdampft war. Dieses Wassereis stammte wahrscheinlich aus Schichten, die unterhalb des Trockeneises gelagert waren.
„Es ist möglich, dass dieses Vorkommen aus dem letzten Periheldurchgang des Kometen im Jahre 2009 stammt“, sagt Arnold. „Es wäre dann eine Ablagerung des verdampften Trockeneises, das damals auf der Oberfläche kondensierte und dort in der anbrechenden dunklen Jahreszeit der südlichen Hemisphäre und mit wachsender Entfernung des Kometen zur Sonne eingefroren wurde.“ Damit erschließt sich ein saisonaler Zyklus für das Kohlendioxid, der der Umlaufperiode des Kometen von 6,5 Jahren entspricht, während der oberflächige Wassereis-Zyklus eher tageszeitlichen Schwankungen unterliegt.
Insgesamt wurden während der Rosetta-Mission etwa 220 Gigabyte wissenschaftliche Daten zur Erde gefunkt, deren komplexe Analyse weiterhin in vollem Gange ist und die künftig das Verständnis zur Herkunft, Natur, Beschaffenheit und der Rolle von Kometen im frühen Sonnensystem entscheidend verbessern werden. Prozesse der kometaren Aktivität und der Dynamik geben dabei wichtige Informationen über das Kometeninnere und damit über die Entwicklung und Herkunft dieser kleinen Körper, die zu den ältesten Objekten aus den frühen Sonnensystem zählen, preis. „Die variablen und dynamischen Eismerkmale auf der Oberfläche des Kometen zum Beispiel sind Ausdruck der komplexen kometaren Aktivität. Sie werden weitere Untersuchungen zur Herkunft und Geschichte des Kometen 67P erschließen“, betont Arnold.
DLR / JOL