Turbo für Simulationen
Mit kombinierten Greenfunktionen lässt sich dramatische Beschleunigung von Vielteilchen-Quantensystemen erzielen.
Wie sich ein Elektron in einem Atom verhält oder wie es sich in einem Festkörper bewegt, lässt sich mit den Gleichungen der Quantenmechanik präzise voraussagen. Die theoretischen Berechnungen stimmen hervorragend mit den Ergebnissen aus Experimenten überein. Doch komplexe Quantensysteme, die viele Elektronen oder Elementarteilchen enthalten, wie Moleküle, Festkörper oder Atomkerne, lassen sich heute nicht einmal mit den leistungsstärksten Computern genau beschreiben. Zu komplex sind die mathematischen Gleichungen dahinter, zu groß ist der Rechenaufwand. Einem Team unter der Leitung von Michael Bonitz vom Institut für theoretische Physik und Astrophysik der Christian-Albrechts-Universität zu Kiel (CAU) ist es jetzt gelungen, ein Simulationsverfahren zu entwickeln, mit dem bis rund 10.000-mal schnellere quantenmechanische Berechnungen als bisher möglich sind.
Das neue Verfahren der Kieler Forscher basiert auf einem der aktuell leistungsstärksten und vielseitig einsetzbarsten Simulationsverfahren für quantenmechanische Vielteilchensysteme. Es verwendet die Methode der Nichtgleichgewichts-Greenfunktionen: Hiermit lassen sich Bewegungen und komplexe Wechselwirkungen von Elektronen mit sehr guter Genauigkeit auch über einen längeren Zeitraum hinweg beschreiben. Diese Methode ist bisher allerdings besonders rechenintensiv: Um die Entwicklung eines Quantensystems über einen zehnmal längeren Zeitraum vorherzusagen, benötigt ein Computer tausendmal mehr Zeit.
Mit dem mathematischen Trick, eine zusätzliche Hilfsgröße einzuführen, gelang es den Forschern der CAU jetzt, die Grundgleichungen der Nichtgleichgewichts-Greenfunktionen so umzuformulieren, dass die Berechnungszeit nur noch linear mit der Prozessdauer steigt. Ein zehnmal längerer Vorhersagezeitraum erfordert also nur noch zehnmal mehr Rechenzeit. Im Vergleich zum bisher verwendeten Verfahren konnten die Physiker eine Beschleunigung um einen Faktor von rund 10.000 feststellen. Bei längeren Prozessdauern steigt dieser Faktor weiter an. Da das Verfahren zwei Greenfunktionen kombiniert, wird es als „G1-G2-Schema“ bezeichnet.
Das neue Berechnungsmodell des Kieler Forschungsteams spart nicht nur teure Rechenzeit, sondern ermöglicht auch Simulationen, die bislang völlig ausgeschlossen waren. „Wir waren selbst überrascht, dass sich diese dramatische Beschleunigung auch in praktischen Anwendungen demonstrieren lässt“, erklärt Bonitz. So lässt sich jetzt zum Beispiel vorhersagen, wie sich bestimmte Eigenschaften und Effekte in Materialien wie Halbleitern über einen längeren Zeitraum hinweg entwickeln. „Das neue Simulationsverfahren ist in vielen Gebieten der Quanten-Vielteilchentheorie anwendbar und wird qualitativ neue Vorhersagen etwa über das Verhalten von Atomen, Molekülen, dichten Plasmen und Festkörpern nach Anregung durch intensive Laserstrahlung ermöglichen“, ist Bonitz überzeugt.
CAU / DE