Vom Bläschen zum Vulkanausbruch
Aufstieg von Gasblasen in magmatischer Schmelze zeigt unerwartetes Verhalten.
Vulkanologen interessieren sich für Dampfblasen, weil sich diese in einer Magmakammer unter einem Vulkan anreichern und ihn für einen Ausbruch scharfmachen. Forscher der ETH Zürich und des Georgia Institute of Technology haben nun herausgefunden, wie sich Blasen in der Magma anreichern können. Im Jahr 1816 blieb in Mitteleuropa der Sommer aus. Die Menschen litten Hunger. Ein Jahr zuvor war in Indonesien der Vulkan Tambora ausgebrochen. Er schleuderte große Mengen Asche und Schwefel in die Atmosphäre. Diese Partikel blockierten das Sonnenlicht und kühlten dadurch das Klima. Dies wirkte sich auch in der Schweiz gravierend auf Land und Leute aus.
Abb.: Simulation des Aufstiegs von Blasen in kristallreicher Magma (blaue Schicht) und in kristallarmer Umgebung. (Bild: ETH Zürich / A. Parmigiani)
Vulkanologen haben mittlerweile eine ziemlich genaue Vorstellung davon, weshalb Supervulkane wie der Tambora nicht nur sehr explosiv sind, sondern auch weshalb sie so viel Schwefel freisetzen: In der obersten Schicht einer Magmakammer, die nur wenige Kilometer tief unter der Erdoberfläche liegt, können sich Gasblasen anreichern. Dadurch baut sich Druck auf, der sich durch den Vulkanausbruch schlagartig abbaut. In diesen Blasen ist vor allem Wasserdampf eingeschlossen, aber auch Schwefel.
„Solche Ausbrüche von Vulkanen können gewaltig sein, und sie fördern enorm viel Asche und Schwefel an die Oberfläche und in die Atmosphäre”, sagt Andrea Parmigiani, Postdoc am Institut für Geochemie und Petrologie der ETH Zürich. „Wir wissen zwar schon länger, dass Gasblasen dabei eine grosse Rolle spielen, wie sich diese jedoch in Magmakammern anreichern, darüber konnten wir bisher nur spekulieren.”
Der Forscher hat deshalb mit weiteren Wissenschaftlern der ETH Zürich und des Georgia Institute of Technology (Georgia Tech) das Verhalten der Bläschen mit einem Computermodell studiert. Die Wissenschaftler haben theoretische Berechnungen und Laborexperimente angestellt und dabei insbesondere untersucht, wie sich Blasen in kristallreichen und kristallarmen Schichten der Magmakammer nach oben bewegen. In vielen Vulkansystemen besteht die Magmakammer zur Hauptsache aus zwei Zonen: Eine obere Schicht, bestehend aus zähflüssiger kristallarmer Schmelze, und eine untere, die reich ist an Kristallen und Poren.
Abb.: Die Zonierung der Magmakammer beeinflusst den Aufstieg von Gasblasen. Die gelbe Schicht ist kristallarm, die braunrote Zone hingegen kristall- und porenreich. (Bild: A. Parmigiani et al.)
Zu Beginn des Projekts gingen Parmigiani sowie Christian Huber vom Georgia Tech und Olivier Bachmann von der ETH davon aus, dass der Aufstieg der Blasen in kristallreichen Zonen des Magmareservoirs stark verlangsamt wird. In kristallarmen Bereichen jedoch sollten die Blasen schneller aufsteigen. „Stattdessen haben wir herausgefunden, dass Blasen in kristallreichen Zonen schneller aufsteigen, wenn gleichzeitig auch der Anteil an flüchtigen Stoffe hoch ist. Sie reichern sich hingegen in darüber liegenden, schmelzenreichen Abschnitten der Magmakammer an”, sagt Parmigiani.
Er erklärt dies so: Nimmt der Anteil an Blasen in den Poren der kristallreichen Schicht zu, verschmelzen einzelne kleine Blasen zu fingerartigen Kanälen. Diese nehmen Fahrt auf und verdrängen dabei im Porenraum vorhandene hoch viskose Schmelze. Diese fingerartigen Kanäle ermöglichen es dem darin enthaltenen Gas, schneller aufzusteigen. Die Blasen müssen dazu allerdings mindestens zehn bis fünfzehn Prozent des Porenraums ausfüllen. „Können sich diese Dampfkanäle nicht bilden, bleiben Einzelblasen mechanisch gefangen”, sagt der Forscher.
Gelangen die fingerartigen Kanäle an die Grenze zur kristallarmen Schmelze lösen sich kugelige Einzelblasen ab. Diese steigen zwar weiter zur Oberfläche auf, ihre Wandergeschwindigkeit verringert sich jedoch, je mehr Blasen am Aufsteigen sind. Der Grund: Jede Blase schiebt eine Bugwelle zähflüssiger Schmelze vor sich her und drückt diese beiseite. Gelangt die benachbarte Blase in den Bereich dieses rückwärts gerichteten Schmelzenflusses, wird sie gebremst.
Diesen Vorgang konnten Parmigianis Kollegen Salah Faroughi und Christian Huber mit einem Labor-
Was dies für die Explosivität eines bestimmten Vulkans bedeutet, ist allerdings noch unklar. „Diese Studie konzentriert sich auf die Grundlagen des Gasflusses in einer Magmakammer. Einen direkte praktische Anwendung wie die Voraussage des Verhaltens eines Vulkans bleibt Gegenstand zukünftiger Forschung”, sagt der Forscher.
Computermodelle bilden nicht die ganze Magmakammer ab, sondern nur einen winzigen Ausschnitt davon; einen Quader von wenigen Kubikzentimetern, der eine scharfe Grenze zwischen kristallarmer und kristallreicher Schicht aufweist. Nur schon um dieses kleine Volumen zu berechnen, benutzte Parmigiani Hochleistungsrechner wie den Euler-
ETH Zürich / DE