26.01.2026 • Nanophysik

Weltrekord-Membran für künftige Quanten-Messtechnik

Nano­me­cha­ni­sche Sys­te­me der TU Wien sind nun prä­zi­se und klein ge­nug für ul­tra­hoch­auf­lö­sen­de Ras­ter­kraft­mi­kro­sko­pe.

Ein großer Sprung in der Messtechnik beginnt mit einer winzigen Lücke von 32 Nanometern. Das ist der Abstand zwischen einer beweglichen Aluminiummembran und einer fixierten Elektrode, die gemeinsam einen extrem kompakten Plattenkondensator bilden – ein neuer Weltrekord. Diese Struktur soll sich künftig für hochpräzise Sensoren eignen, wie sie etwa für Rasterkraftmikroskope benötigt werden. Die TU Wien entwickelt unterschiedliche Hardware-Plattformen, um Quantensensorik einfacher, robuster und vielseitiger nutzbar zu machen. In konventionellen optomechanischen Experimenten wird die Bewegung winziger mechanischer Strukturen mit Licht ausgelesen – doch optische Aufbauten sind empfindlich, komplex und schwer in handliche, kleine Systeme integrierbar. Die TU Wien nutzt deshalb statt optischer Schwingungen andere, die sich für kompaktere Sensoren eignen.

In der Weltrekord-Struktur mit dem 32-Nanometer-Kondensator übernimmt ein elektrischer Schwingkreis diese Aufgabe. In anderen Experimenten verwendet das Team der TU Wien rein mechanische Resonatoren, deren Schwingungen gezielt miteinander gekoppelt werden können. 

Beide Plattformen verfolgen dasselbe Ziel: Mechanische und elektromechanische Nanostrukturen so weit zu verbessern, dass sie eines Tages Messungen ermöglichen, die nur noch von den fundamentalen Grenzen der Quantenphysik beschränkt sind.

„Die Schwingung unserer Nanomembran wird von verschiedenen Parametern beeinflusst“, erklärt Daniel Platz vom Institut für Sensor- und Aktuatorsysteme der TU Wien, der das Projekt zusammen mit Ulrich Schmid geleitet hat. „Unsere Aluminiummembran bildet zusammen mit einer Elektrode einen winzigen Kondensator. In Kombination mit einer Spule entsteht ein Schwingkreis, dessen Resonanz sehr empfindlich auf jede Veränderung der mechanischen Schwingung reagiert.“

Mehr zu Nanomechanik

Photo
Photo
Photo
Photo
Andreas K. Hüttel • 9/2021 • Seite 47

Hybride Nanoröhren

Photo
Thomas Faust, Johannes Rieger, Jörg P. Kotthaus und Eva M. Weig • 4/2014 • Seite 29

Schwingende Nanosaiten

Diese Kopplung zwischen Membranbewegung und elektrischem Schwingkreis ermöglicht die Messung extrem kleiner Schwingungen. Normalerweise hat man bei solchen Messungen immer mit einem gewissen Messrauschen zu kämpfen – mit Ungenauigkeiten, die unterschiedliche Ursachen haben können. Temperatur kann zu Rauschen führen, optische oder elektrische Signale rauschen, weil sie aus einzelnen Teilchen bestehen. Optische Messmethoden können dabei zwar prinzipiell sehr exakt sein. Die nun an der TU Wien entwickelten Strukturen ermöglichen ein besseres Rausch-Verhalten als bisher, das prinzipiell nur von den Gesetzen der Quantenphysik beschränkt wird, ohne dabei auf optische Komponenten zurückzugreifen.

Das macht die Technologie zu einem perfekten Partner für die Rasterkraftmikroskopie: Winzige Kräfte zwischen den Atomen der Oberfläche und der Spitze erzeugen Vibrationen – ihre Messung ergibt ein genaues Bild der Oberfläche. „Wir ersetzen optische Messungen durch die Messung des elektrischen Schwingkreises – ganz ohne sperrige optische Komponenten“, erklärt Ioan Ignat, der zusammen mit MinHee Kwon am Projekt geforscht hat – beide arbeiten an der TU Wien derzeit an ihrer Dissertation.

Nicht einmal der elektrische Schwingkreis ist zwingend nötig. Mit einer anderen Struktur konnte man zeigen: Man kann stattdessen auch auf rein mechanische Strukturen zurückgreifen, die sich in einem Chip integrieren lassen. „Aus Sicht der Quantentheorie spielt es gar keine entscheidende Rolle, ob man mit elektromagnetischen Schwingungen arbeitet oder mit mechanischen Vibrationen – mathematisch lässt sich beides gleich beschreiben“, sagt Kwon.

Damit lässt sich auch das Problem umgehen, die elektrische Schwingkreise für Quantensensorik auf sehr tiefe Temperaturen abkühlen zu müssen. „Selbst bei Raumtemperatur lassen sich die Schwingungen eines rein mikromechanischen Systems über einen GHz-Frequenzbereich miteinander koppeln, ohne dass thermisches Rauschen die Effekte der Kopplung überdeckt“, sagt Platz. „Das ist bemerkenswert, denn viele der bisherigen Quantensensorik-Experimente funktionieren nur in der Gegend des absoluten Temperaturnullpunkts.“

„Unsere Ergebnisse stimmen uns extrem optimistisch für die Zukunft“, sagt Platz. „Wir konnten nun zeigen, dass unsere Nanostrukturen wichtige Eigenschaften haben, die man für die Herstellung einer neuen, zuverlässigen, hochpräzisen Generation von Quanten-Sensoren braucht.“ [TU Wien / dre]

Anbieter

Technische Universität Wien

Karlsplatz 13
1040 Wien
Österreich

Kontakt zum Anbieter







Anbieter des Monats

SmarAct GmbH

SmarAct GmbH

Mit der Entwicklung und Produktion von marktführenden Lösungen im Bereich hochpräziser Positioniertechnik, Automatisierungslösungen und Metrologie begleitet die SmarAct Group ihre Kunden zuverlässig bei der Realisierung ihrer Ziele.

Veranstaltung

AKL – International Laser Technology Congress in Aachen

AKL – International Laser Technology Congress in Aachen

Vom 22. bis 24. April 2026 lädt das Fraunhofer-Institut für Lasertechnik ILT zum AKL’26 ein. Der Photonik-Kongress mit über 500 Teilnehmenden findet zum 15. Mal statt, diesmal mit einem deutlich erweiterten Programm, über 80 Vorträgen und 54 Ausstellerständen.

Meist gelesen

Themen