23.03.2015

Wenn Sterne sich zu nahe kommen

Nova aus dem Jahr 1670 entstand aus einer Sternenkarambolage.

Im Jahr 1670 sahen europäische Astronomen am Himmel einen „neuen“ Stern aufleuchten. Bisher nahm man an, es handelte sich dabei um eine gewöhnliche Nova. Mit dem APEX-Teleskop, dem 100-m-Radioteleskop Effelsberg und weiteren Observatorien fanden Wissenschaftler unter der Leitung des Max-Planck-Instituts für Radioastronomie in Bonn jetzt heraus, dass der Grund ein viel selteneres Phänomen in Form einer heftigen Karambolage zwischen zwei Sternen war. Der ursprüngliche Ausbruch im Jahr 1670 war so heftig, dass man ihn leicht mit bloßem Auge am Himmel erkennen konnte. Die heute noch vorhandenen Spuren sind hingegen so schwach, dass es einer sorgfältigen Analyse von Beobachtungen mit Submillimeterteleskopen bedurfte, bevor das Rätsel nach über 340 Jahren gelöst werden konnte.

Abb.: Der Überrest der Nova von 1670, mit modernen Instrumenten beobachtet (Bild: ESO / T. Kamiski)

Einige der größten Astronomen der Geschichte, darunter Cassini und Hevelius, der Vater der Karthographie des Mondes, haben sorgfältige Aufzeichnungen der Erscheinung eines neuen Sterns am Himmel im Jahr 1670 hinterlassen. Hevelius beschrieb seine Beobachtung als Nova sub capite Cygni – also einen neuen Stern unter dem Kopf des Schwans, aber die heutigen Astronomen kennen das Objekt unter dem Namen Nova Vul 1670. Historische Aufzeichnungen von Nova-Ausbrüchen sind selten und für die moderne Astronomie von großem Interesse. Nova Vul 1670 gilt sowohl als die älteste überlieferte Nova, als auch als lichtschwächste Nova, nachdem sie später wiederentdeckt wurde.

„Das Objekt galt für viele Jahre als Nova, aber je länger es untersucht wurde, desto weniger sah es nach einer gewöhnlichen Nova oder irgendeiner anderen Art von explodierenden Sternen aus“, erklärt Tomasz Kamiski, Erstautor der aktuellen Studie, der bei der ESO und beim Max-Planck-Institut für Radioastronomie in Bonn arbeitet.

Bei den ersten Beobachtungen im Jahr 1670 war die Nova Vul 1670 leicht mit bloßen Auge am Himmel sichtbar, mit Helligkeitsschwankungen im Lauf der nächsten beiden Jahre. Danach verschwand das Objekt, erschien zweimal wieder am Himmel, bevor es endgültig für das bloße Auge unsichtbar wurde. Obwohl die Aufzeichnungen das Phänomen für die damalige Zeit überraschend gut dokumentierten, fehlte auch den besten Astronomen dieser Zeit einfach die Ausrüstung, um die eigenartigen Eigenschaften dieser scheinbaren Nova erklären zu können.

Während des 20. Jahrhunderts kamen die Astronomen zu dem Schluss, dass die meisten Novae als explosive Ausbrüche in engen Doppelsternsystemen erklärt werden können. Das Verhalten von Nova Vul 1670 war mit diesem Modell jedoch nicht vernünftig zu erklären und blieb ein Rätsel.

Auch mit der ständig wachsenden Empfindlichkeit von astronomischen Fernrohren war es lange Zeit unmöglich, überhaupt eine Spur dieses Ereignisses an der entsprechenden Stelle am Himmel nachzuweisen. Erst in den 1980er Jahren gelang es einem Team von Astronomen, einen schwachen Nebel in der Umgebung der Ausbruchsstelle zu lokalisieren. Während diese Beobachtung eine verlockende Verbindung zu dem Ereignis von 1670 darstellt, trägt sie doch wenig bei zur Aufklärung der wahren Natur von dem, was vor über 300 Jahren am Himmel über Europa zu sehen war.

Tomasz Kamiski führt die Geschichte fort: „Wir haben jetzt das Gebiet in Submillimeter- und Radiowellenlängen untersucht. Und dabei haben wir herausgefunden, dass die gesamte Umgebung dieses Überrests in ein kühles Gas eingebettet ist, das eine Vielzahl von Molekülen in ungewöhnlicher chemischer Zusammensetzung enthält.“

Neben APEX nutzten die Wissenschaftler das Submillimeter Array (SMA) in Hawaii und das 100m-Radioteleskop Effelsberg zum Nachweis der chemischen Zusammensetzung sowie den Häufigkeitsverhältnissen unterschiedlicher Isotope in dem Gas. Beides zusammen ergibt ein sehr detailliertes Bild des Aufbaus dieser Region und ermöglicht eine Abschätzung darüber, wo das Material herstammt.

Wie das Wissenschaftlerteam herausfand, ist die Masse des kalten Gases zu groß, um in einem Nova-Ausbruch entstanden zu sein. Dazu sind auch die im Bereich von Nova Vul 1670 gemessenen Isotopenverhältnisse unterschiedlich zu dem, was man von einer Nova erwarten würde. Aber wenn es keine Nova war, was könnte es dann gewesen sein?

Die Antwort liegt in einer eindrucksvollen Kollision zweier Sterne, die leuchtkräftiger ausfällt als der Ausbruch einer Nova, aber weniger leuchtkräftig als eine Supernova. Die entsprechenden Sterne werden als Red Transients bezeichnet. Es handelt sich dabei um ein sehr seltenes Ereignis, bei dem ein Stern aufgrund des Zusammenstoßes mit einem weiteren Stern explodiert. Es wird Materie in die Umgebung hinausgeschleudert und es verbleibt ein nur schwach leuchtender Überrest, eingebettet in eine kalte Hülle aus Molekülen und Staub. Diese erst seit kurzem bekannte Art von explosiven Sternen kann die Beobachtungsergebnisse von Nova Vul 1670 fast perfekt erklären. „Diese Art von Entdeckungen macht am meisten Spaß – etwas, das vollkommen unerwartet kommt”, schließt Ko-Autor Karl Menten vom Max-Planck-Institut für Radioastronomie in Bonn.

ESO / DE

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Meist gelesen

Themen