Wie Eiweiß weiß wird
Röntgenanalysen zeigen Strukturveränderungen beim Erwärmen im Detail.
Eier gehören zu den vielfältigsten Zutaten für Lebensmittel. Sie können Gel, Schaum oder vergleichsweise fest sein und dienen auch als Grundlage für Emulsionen. Bei etwa achtzig Grad Celsius wird Eiweiß („Eiklar“) fest und auch optisch undurchsichtig. Das liegt daran, dass die Proteine in dem Eiweiß bei Erhitzen eine Netzstruktur ausbilden. Um die genaue molekulare Struktur von Eiweiß zu untersuchen, ist kurzwellige Strahlung wie Röntgenlicht nötig, die das undurchsichtige Eiweiß durchdringt und deren Wellenlänge nicht größer ist als die zu untersuchenden Strukturen.
„Um die Strukturänderung im Detail zu verstehen, muss man das Phänomen auf der Mikrometer-Skala untersuchen“, erläutert die Hauptautorin der ersten Studie, Alexander-von-Humboldt-Stipendiatin Nafisa Begam aus Schreibers Gruppe. Die Forscher benutzten die Röntgenphotonen-Korrelationsspektroskopie (XPCS) in einer bestimmten Geometrie, so dass sich damit Struktur und Dynamik der Proteine im Eiweiß zugleich bestimmen ließen.
Für ihre Versuche an der Messstation P10 an PETRA III verwendeten die Wissenschaftler ein handelsübliches Hühnerei und füllten das Eiweiß in ein Quarzröhrchen mit 1,5 Millimetern Durchmesser. „Darin wurde das Eiweiß kontrolliert erhitzt, während wir es mit Röntgenlicht analysiert haben“, berichtet Ko-Autor Fabian Westermeier von DESY. „Der Röntgenstrahl war dabei auf 0,1 mal 0,1 Millimeter aufgeweitet, so dass die Strahlungsdosis die Proteinstrukturen nicht geschädigt hat.“
Die Messung zeigt die Proteindynamik im Eiweiß über rund eine Viertelstunde. In den ersten knapp drei Minuten wuchs das Proteinnetzwerk demnach exponentiell und erreichte nach etwa fünf Minuten ein Plateau, auf dem sich nahezu keine weiteren Proteinverknüpfungen mehr formten. Die mittlere Maschengröße des Proteinnetzes lag nach dieser Zeit bei ungefähr 0,4 Mikrometern.
In der zweiten Studie untersuchte das Team mit der XPCS-Technik die Selbstorganisation von Proteinlösungen in proteinreiche und proteinarme Domänen als Beispiel von Strukturbildung in der Zellbiologie. Dabei ließ sich die temperaturabhängige Dynamik zeitabhängig verfolgen. „Bei hoher Proteinkonzentration sinkt die Mobilität, was die Entwicklung der Phasentrennung bremst. Das ist wichtig für die besondere Dynamik des Systems“, berichtet Hauptautorin Anita Girelli aus Schreibers Gruppe.
Die vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Studien zeigen nicht nur neue Details zur Strukturänderung in Eiweiß, sondern belegen ebenso das Untersuchungskonzept, das auch bei anderen Proben Verwendung finden kann, wie die zweite Studie belegt. „Die erfolgreiche Anwendung der Röntgenphotonen-Korrelationsspektroskopie eröffnet einen neuen Weg zur Untersuchung der Dynamik von Biomolekülen, was unerlässlich ist, um sie wirklich zu verstehen“, betont Schreiber.
DESY / DE
Weitere Infos
- Originalveröffentlichung
N. Begam et al.: Kinetics of Network Formation and Heterogeneous Dynamics of an Egg White Gel Revealed by Coherent X-Ray Scattering, Phys. Rev. Lett. 126, 098001 (2021); DOI: 10.1103/PhysRevLett.126.098001 - Physik der molekularen und biologischen Materie (F. Schreiber), Universität Tübingen