Wie Lithium-Ionen-Batterien beim Entladen ihre Eigenschaften verändern
Neue Modelle für die genaue Beschreibung des Lade- und Entladevorgangs.
Die Vorgänge in Lithium-Ionen-Akkus technisch präzise zu beschreiben, ist schwierig. Wie ein Forschungsteam der TU Wien jetzt zeigt, können sich die Materialeigenschaften während des Ladevorgangs drastisch verändern. Mithilfe zahlreicher Experimente gelang es dem Team, eine praxistaugliche mathematische Beschreibung dieser Veränderungen zu entwickeln. Damit lässt sich berechnen, wie sich die Batteriespannung in Abhängigkeit des Ladezustands ändert. Es ist sogar möglich, von außen aus dem elektrischen Verhalten der Batterie Information über den inneren Zustand des Elektrodenmaterials abzuleiten.
Entscheidend für den Bau einer Lithium-Ionen-Batterie sind Elektrodenmaterialien, die bewegliche Lithium-Ionen enthalten. In einer der beiden Elektroden sitzt zu Beginn jedes dieser Ionen an seinem vorgesehenen Platz, der Akku ist vollständig entladen. Wenn man dann eine elektrische Spannung anlegt, beginnen sich die positiv geladenen Lithium-Ionen in Richtung der anderen Elektrode zu bewegen, sie hinterlassen Leerstellen im Kristall. Je kleiner die Zahl der verbleibenden Lithium-Ionen wird, umso höhere Spannungen muss man aufwenden, um auch die letzten Ionen aus dem Kristall zu holen, bis im Idealfall alle Lithium-Ionen entfernt sind – dann ist der Akku vollständig aufgeladen.
Oft versucht man, die Bewegung der Lithium-Ionen in solchen Materialien mit Hilfe eines einzelnen Parameters zu beschreiben – mit dem Diffusionskoeffizienten. Aber das Team konnte zeigen, dass das nicht genügt. „Schließlich ändert sich das Material während des Ladens ganz grundlegend“, erklärt Andreas Bumberger von der TU Wien. „Wir beginnen mit einem Kristall, der viel Lithium enthält, und am Ende haben wir einen nahezu lithiumfreien Kristall. Dementsprechend stark ändern sich auch die Materialeigenschaften.“ Man muss den Ladeprozess also als dynamische Materialveränderung verstehen.
Eine Möglichkeit dafür wäre, den Verlauf der Batteriespannung auf atomarer Ebene mit quantenphysikalischen Formeln zu berechnen – etwa mit Hilfe der Dichtefunktionaltheorie. Das ist allerdings in der Praxis, wenn man Batteriematerialien besser verstehen möchte, nur bedingt hilfreich. Solche Rechnungen sind sehr aufwändig, außerdem ist es schwierig, auf diese Weise einen einfachen Zusammenhang zwischen der Spannung und den verschiedenen Materialdefekten herzustellen.
Das Forschungsteam versuchte daher einen Mittelweg: Man entwickelte ein Modell, das einerseits die Materialien nicht bloß mit einem Parameter beschreibt, sondern die kontinuierliche Umwandlung des Materials beim Ladeprozess berücksichtigt, das aber andererseits einfacher und anschaulicher ist als eine quantenphysikalische Beschreibung des Materials auf atomarer Ebene. „Wie wir zeigen, passt unser Modell ganz ausgezeichnet zu den Daten, die wir aus impedanzspektroskopischen Messungen erhalten haben“, sagt Bumberger. „Wir analysieren, wie sich das elektrische Verhalten des Akkus verändert, während sich sein Ladungszustand verändert. Und aus den gemessenen Daten können wir mit Hilfe unseres Modells wertvolle Informationen über die atomaren Vorgänge beim Laden gewinnen.“
So lässt sich auf diese Weise etwa erkennen, welche Art von Defekten das Material aufweist, ob vielleicht an manchen Stellen falsche Atome sitzen oder das Kristallgitter gewisse Unregelmäßigkeiten hat – und das ganz ohne Blick durchs Mikroskop, nur auf Basis elektrischer Messungen. Das macht die Grundlagenforschung an neuartigen Akkus nun deutlich einfacher: Es ist ein wichtiger Schritt für das Verständnis vieler Materialien, die auch in Zukunft für die Entwicklung von Akkus eine große Rolle spielen werden.
TU Wien / RK
Weitere Infos
- Originalveröffentlichung
A. Bumberger et al.: Defect Chemistry of Spinel Cathode Materials─A Case Study of Epitaxial LiMn2O4 Thin Films, Chem. Mater. 35, 5135 (2023); DOI: 10.1021/acs.chemmater.3c00814 - Institut für chemische Technologien und Analytik, Technische Universität Wien, Österreich