Wie Zellen zusammen arbeiten
Dynamik von Zellen lässt sich mit neuen interdisziplinären Simulationen vorhersagen.
Für die Erforschung zellulärer Prozesse haben Wissenschaftler der Universität Heidelberg ein spezielles mathematisches Modell entwickelt: Mithilfe einer darauf aufbauenden Software können sie simulieren, wie sich größere Ansammlungen von Zellen auf vorgegebenen geometrischen Strukturen verhalten. Unterstützt wird damit die Auswertung mikroskopischer Beobachtungen des Zellverhaltens auf strukturierten Unterlagen. Ein Beispiel dafür ist ein Modell für Wundheilung, in dem Hautzellen eine Lücke schließen müssen. Ein weiterer Anwendungsbereich liegt im Hochdurchsatz-
Abb.: Nach Computersimulationen können Hautzellen auf einer strukturierten Unterlage, die eine Wunde simuliert, Lücken bis zu einer Größe von etwa 200 Mikrometern als Ensemble überbrücken. (Bild: P. Albert)
Eines der wichtigsten Fundamente der modernen Lebenswissenschaften ist es, Zellen außerhalb des Körpers zu kultivieren und mit Mikroskopieverfahren beobachten zu können. Auf diese Weise lassen sich zelluläre Prozesse viel genauer analysieren als im Körper. Dabei treten jedoch spezifische Probleme auf. „Wer biologische Zellen schon einmal unter dem Mikroskop beobachtet hat, weiß, wie unberechenbar ihr Verhalten sein kann. Auf einer herkömmlichen Kulturschale fehlt ihnen, anders als in ihrer natürlichen Umgebung im Körper, die ,Orientierung‘. Deshalb lassen sich aus ihrer Form und Bewegung bei bestimmten Fragestellungen der Forschung keine Regelmäßigkeiten ableiten“, erläutert Schwarz. Um mehr über das natürliche Verhalten der Zellen lernen zu können, setzen die Forscher daher auf Methoden aus den Materialwissenschaften. Die Unterlage zur mikroskopischen Untersuchung wird dabei so strukturiert, dass sie Einfluss auf die Regelmäßigkeit von Zellform und Zellbewegung hat. Dazu werden, so der Heidelberger Physiker, mit bestimmten Druckverfahren Proteine in geometrisch wohldefinierten Bereichen der Unterlage angebracht. Das Zellverhalten kann man dann mit den üblichen Mikroskopieverfahren beobachten und ausgewerten.
Die Arbeitsgruppe von Ulrich Schwarz hat sich zur Aufgabe gemacht, das Verhalten von biologischen Zellen auf strukturierten Unterlagen mathematisch zu beschreiben. Derartige Modelle sollen es möglich machen, das Zellverhalten umfassend und quantitativ zu berechnen. Philipp Albert hat dafür ein aufwändiges Computerprogramm entwickelt, das alle wesentlichen Eigenschaften von Einzelzellen und ihrer Wechselwirkung berücksichtigt und vorhersagen kann, wie sich auch größere Ansammlungen von Zellen auf den vorgegebenen geometrischen Strukturen verhalten. „Aus dem Zusammenspiel mehrerer Zellen entstehen oft überraschende und neuartige Verhaltensmuster wie die Bildung von Strömungen, Wirbeln und Brücken. Wie auch in physikalischen Systemen, etwa Flüssigkeiten, ist hier das Ganze mehr als die Summe der Teile. Unser Software-
Eine weitere vielversprechende Anwendung, die die Arbeitsgruppe von Holger Erfle am BioQuant-
Die Forschungsarbeiten wurden von 2011 bis 2015 von der Europäischen Gemeinschaft im Rahmen des Programms „Micropattern-
U. Heidelberg / DE