09.04.2025

Zuverlässige Faser-PIC-Verbindungen für die Quantentechnologie

Klebstofffreies Laserschweißverfahren zur Kopplung photonisch integrierter Schaltkreise mit optischen Glasfasern realisiert.

Eine Tieftemperaturumgebung ist unerlässlich zur Beobachtung von Quanteneffekten. Letztere können einen enormen Vorteil für die Lebensqualität von Menschen haben, so ist der Umgang mit Big Data heute nur mit Quantencomputing lösbar, beispielsweise in der personalisierten Medizin und der Verwaltung von Informationen in Krankenhäusern. Die Entwicklung von kryogenen Systemen für Quantencomputing wird aktuell intensiv gefördert. Quantentechnologische Systeme, mit implementierten PIC‐basierten Modulen, bieten hier eine kompakte Lösung für eine sichere Kommunikation und Vernetzung in Quantencomputing. Zuverlässige Glasfaserverbindungen sind jedoch eine Grundvoraussetzung für solche photonischen Quantensysteme. Auch andere Bereiche wie die Biophotonik oder Sensorik profitieren davon.

Abb.: Im Projekt QWeld haben Forscher erstmals eine stabile, klebstofffreie,...
Abb.: Im Projekt QWeld haben Forscher erstmals eine stabile, klebstofffreie, optische Kopplungslösung für PICs entwickelt, die potenziell bei niedrigen Temperaturen bis zu vier Kelvin eingesetzt werden kann.
Quelle: V. Mai, Fh.-IZM

Weitere Nachrichten zum Thema

Photo
Photo
Photo
Photo

Im Rahmen des Forschungsprojekts QWeld entwickelten Forscher am Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration ein Laserschweißverfahren für vertikale, optische Verbindungen unter Verwendung eines Prozessanlageprototypen „PICWeld“, der bereits in einem vorangegangenen Forschungsprojekt aufgebaut und installiert wurde. Mit der Anlage ließ sich das erste Mal überhaupt eine direkte Kantenverbindung zwischen einer Glasfaser und einem PIC aus Quarzglas mithilfe eines Laserschweißverfahrens realisieren. Die Langlebigkeit und thermische Robustheit bieten einen klaren Vorteil gegenüber der konventionellen Verbindungsmethode mittels Klebstoffes.

Der Schwerpunkt in QWeld liegt darauf, diese Verbindungstechnologie für Anwendungen in kryogenen Umgebungen zu realisieren. Eingesetzt werden PICs, die mit dem Standard-CMOS-Verfahren hergestellt sind, allerdings mit einer grundlegenden Anforderung: eine Deckschicht aus Siliziumdioxid zum Glas-Glas-Laserschweißen ist erforderlich. Eine Besonderheit ist die vertikale Kopplung der Faser mit dem PIC, üblicherweise mit einem spezifischen Anstellwinkel. Beim Schweißen trifft der Laser beidseitig auf die Kontaktstelle zwischen dem PIC und der Glasfaser und erzeugt die stoffschlüssige Verbindung innerhalb weniger Sekunden.

Damit bietet dieses Fertigungsverfahren eine immense Zeitersparnis. Die veränderten Randbedingungen, vor allem die SiO2-SiO2-Materialpaarung und hohen Präzisionsanforderungen bei der Ausrichtung zueinander, haben eine tiefgreifende Weiterentwicklung des Prozesses und der zugehörigen Anlage erfordert. Es wurde beispielsweise eine lokale Vorheizung, erweiterte Ausrichtmöglichkeiten sowie Messtechnik integriert. Die Schweißverbindung ist langlebig, reproduzierbar und automatisierbar, beispielsweise für die Serienfertigung von PICs, die in Quantensystemen so dringend gebraucht werden.

„Im neu entwickelten Laserschweißprozess wird mit einem CO2-Laser ein gewisser Bereich der SiO2-Schicht des PIC vorgewärmt, um den Temperaturunterschied zwischen Faser und PIC beim Verschweißen zu minimieren“, erläutert Alethea Vanessa Zamora Gómez, Projektkoordinatorin und Wissenschaftlerin am Fraunhofer-IZM. „Dieses innovative Vorwärmverfahren verspricht alle derzeitigen Herausforderungen der Faseranbindung für PICs bei kryogenen Temperaturen zu lösen. Dank der Verwendung von CO2-Lasern ist der automatisierte Prozess günstig und zuverlässig in der Herstellung, was es attraktiv für die Anwendung in der Industrie macht.“

Zufrieden können Zamora Gómez und Prozessentwickler Marco Queisser damit das Ziel des Projekts bestätigen: Die Erforschung eines neuartigen Laserschweißverfahrens für die Faser-PIC-Kopplung, um zukünftige Kooperationsmöglichkeiten in dem Bereich der Kryotechnik und Quanten-PICs zu realisieren. Darüber hinaus sind weitere potenzielle Anwendungen in der Biophotonik, Sensorik und bei Hochleistungslasern möglich.

Fh.-IZM / RK

Content-Ad

Park FX200 | Das fortschrittlichste AFM für 200-mm-Proben

Park FX200 | Das fortschrittlichste AFM für 200-mm-Proben

Das Park FX200 ist ideal für Forschung und Industrie zur automatisierten Messung von bis zu 200mm großen Proben und bietet bedeutende Fortschritte in der AFM-Technologie

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen