Der Neutrino-Detektor Borexino ist eines der Experimente im italienischen Untergrundlabor Gran Sasso (vgl. S. 23, Foto: V. Steiger, LNGS).
Physik Journal 3 / 2011
Meinung
Inhaltsverzeichnis
Aktuell
USA
Zusammenarbeit mit China Erzwungene Verschwendung Arbeitslose Doktoren COMPETES geht weiter
Leserbriefe
Im Brennpunkt
Doppelt oder gar nicht sehen
Die geschickte Anordnung zweier doppelbrechender Kalkspatkristalle funktioniert als optische „Tarnkappe“.
Terahertz im Aufwärtstrend
Neue Methoden ermöglichen leistungsfähigere Terahertz-Quellen.
Forum
Physik im Untergrund
Im Gran-Sasso-Labor in den italienischen Abruzzen versuchen Physiker, einige der großen Fragen der Teilchenphysik zu beantworten.
Mitten in dem zehn Kilometer langen Autobahntunnel der italienischen A24, zwischen Teramo und L’Aquila und rund hundert Kilometer von Rom entfernt, leuchten plötzlich orangefarbene Warnleuchten auf, die den fließenden Verkehr darauf vorbereiten sollen, dass unser Kleinbus abbremst. Dem Schild „INFN solo autorizzati“ folgend, biegen wir rechts in einen Seitenstollen ein und passieren eine Schranke sowie ein großes Stahltor. Als der Wagen an einer Kabine mit Sicherheitspersonal anhält, schließt sich das Tor wieder. Schlagartig verschwindet das Rauschen des Straßenverkehrs, Stille kehrt ein. Gemeinsam mit Technikern und Physikern, die der Kleinbus an ihren Arbeitsplatz gebracht hat, befinde ich mich im größten Untergrundlabor der Welt, dem vor 30 Jahren gegründeten Laboratori Nazionali del Gran Sasso des italienischen Istituto Nazionale di Fisica Nucleare (INFN). Hier unten, abgeschirmt von der kosmischen Strahlung durch 1400 Meter dickes Gestein der fast 3000 Meter hohen Abruzzen, jagen internationale Kollaborationen von Physikern äußerst flüchtige Teilchen wie Neutrinos oder versuchen, extrem seltene Reaktionen nachzuweisen. Damit tasten sie sich in die Terra incognita jenseits des Standardmodells vor. Ihr Ziel: einige der großen Fragen der Teilchenphysik zu beantworten. Sind Neutrinos ihre eigenen Antiteilchen? Welche anderen Eigenschaften haben die drei bekannten Neutrinotypen? Gibt es Dunkle Materie und wenn ja, woraus besteht sie? ...
Überblick
Kalte Riesen
In ultrakalten Rydberg-Gasen lassen sich zahlreiche Vielteilchenphänomene untersuchen.
Die nach Johannes Rydberg benannten elektronisch hochangeregten Atome erfahren dieser Tage weltweit eine Renaissance. Auslöser hierfür ist die Kombination mit ultrakalten Atomgasen, deren Freiheitsgrade sich fast vollständig kontrollieren lassen. Damit ist es möglich, die vielfältigen physikalischen Eigenschaften der Rydberg-Atome in einer noch nie da gewesenen Präzision zu untersuchen, zu manipulieren und zu nutzen. Vor allem das Zusammentreffen von hohen Dichten und starker Wechselwirkung eröffnet zahlreiche Perspektiven für stark korrelierte Quantensysteme und die Quanteninformation.
Vor fast 200 Jahren beobachtete Joseph von Fraunhofer schmale dunkle Streifen im Spektrum des Sonnenlichts. Diese entstehen, wenn die Sonnen- sowie die Erdatmosphäre die von der heißen Sonne emittierte Schwarzkörperstrahlung absorbieren. Einige dieser Linien konnte Balmer 1885 der nach ihm benannten Serie von Spektrallinien im Wasserstoff zuordnen, z. B. eine Absorptionslinie bei 410 nm, die dem Übergang zwischen den Hauptquantenzahlen n = 2 nach n = 6 entspricht und damit einen ersten Hinweis auf höhere Energieniveaus der Atome gab. Mit der phänomenologischen Beschreibung der Wasserstoffserien durch Johannes Rydberg hatten dann auch die hochangeregten Zustände (n > 10) ihren Namenspatron gefunden. Der spektroskopische Fingerabdruck hochangeregter Atome und Moleküle liefert nicht nur detaillierte Informationen über die Sonne, sondern auch über viel fernere Objekte wie interstellare Wolken und Plasmen. Ein weiteres Beispiel für die Bedeutung dieser exotischen Zustände ist der direkte Nachweis der Feldquantisierung des elektromagnetischen Feldes durch die kohärente Kopplung von hochangeregten Atomen, kurz Rydberg-Atomen, an das Vakuumfeld eines Mikrowellenresonators. Damit gelang es eindrucksvoll, die Vorhersagen der Quantenelektrodynamik zu bestätigen [1]....
Alles aus dem Nichts
Wie nach der Schleifenquantengravitation aus dem absoluten Vakuum die Raumzeit entsteht.
Eine Quantentheorie der Gravitation ist ein noch unerreichtes Ziel der Physik. Ein Ansatz ist die so genannte Schleifenquantengravitation. Diese startet von einer absoluten Leere und versucht sich an der mathematischen Konstruktion des gesamten Universums. Konkrete kosmologische Testmöglichkeiten sind in den letzten Jahren in Reichweite gerückt.
Das Vakuum der modernen Physik ist keinesfalls vollkommen leer, denn dank der Unschärfe geborgter Energie blitzen selbst im leeren Raum immer Teilchenpaare auf, um rasch wieder zu vergehen. Im Mittel ist und bleibt das Vakuum dennoch leer. Aber stimmt das wirklich? Leerer Raum hat immerhin noch etwas: Raum. Und Raum, samt Zeit, ist nach der Allgemeinen Relativitätstheorie kein absolut gegebenes Gerüst und immun gegenüber physikalischem Geschehen, sondern selbst ein wandelbares Objekt. Im expandierenden Universum dehnt sich der Raum aus, gemäß Einsteins Gleichung der Verteilung der Materie gehorchend. Im Inneren Schwarzer Löcher kann sich der Raum dagegen gänzlich zusammenziehen. Die Zeit vergeht mal schneller, mal langsamer, je nachdem, wie groß das Gravitationspotential am Ort einer Messung im Vergleich zu dem an der Signalquelle ist. Raum und Zeit werden durch die Materie − oder auch allein durch sich selbst − verbogen und gekrümmt. Der Raum mit seinem Volumen, seiner Expansion und seinen geometrischen Eigenschaften ist damit als physikalisches Objekt anzusehen, ebenbürtig mit, wenn auch ganz verschieden von der Materie. ...
Physik im Alltag
Menschen
Bücher/Software
A. Müller: Schwarze Löcher / M. Begelman und M. Rees: Gravity's Fatal Attraction
DPG
Unter Physikern stimmt die Chemie
Jubiläumsfeier zur Erinnerung an die Fusion der beiden Fachgesellschaften aus Ost und West
Wer sich vereinigen will, muss teilen lernen
Festvortrag zur Entwicklung der Forschung in den neuen Bundesländern
Ein Kuriosum als Gottesgeschenk
Aspekte des Vereinigungsprozesses in der Forschung
Tagungen
Particle Accelerators and High Intensity Lasers
470. Wilhelm und Else Heraeus-Seminar