Ab-initio-Modelle zur Entstehung schwerer Elemente
Virtuelles Gitter beschränkt Rechenzeit bei Simulationen auf quadratisches Wachstum.
Alphateilchen spielen eine entscheidende Rolle bei der Bildung schwererer Elemente. Kohlenstoff geht etwa aus der Verschmelzung dreier Alphateilchen hervor. Kommt noch ein weiterer Heliumkern hinzu, bildet sich Sauerstoff – eine weitere Voraussetzung für die Entstehung irdischen Lebens. Ein internationales Forscherteam stellt nun eine neue Methode vor, mit der sich diese Geburtsprozesse im Innern von Sternen detailliert auf Supercomputern simulieren lassen. Das Verfahren verringert den Rechenaufwand und ermöglichte es erstmals den Streuprozess zweier Alphateilchen von Grund auf zu berechnen.
Abb.: Streuung zweier Alphateilchen, im Hintergrund: Supercomputer JUQUEEN am Jülich Supercomputing Centre JSC. (Bild: FZ Jülich)
Die Simulation der Prozesse, die zur Bildung schwererer Elemente führen, ist sehr rechenintensiv. Selbst die schnellsten Supercomputer der Welt sind gerade einmal in der Lage, die Entstehung sehr leichter Elemente nachzuvollziehen. All die umherschwirrenden Protonen und Neutronen, aus denen sich auch die Atomkerne zusammensetzen, stehen miteinander in Wechselwirkung. Zudem gilt es, vielfältige theoretisch mögliche Quantenzustände jedes Teilchens zu berücksichtigen. Der erforderliche Rechenaufwand steigt daher mit der Zahl der beteiligten Partikel sprunghaft an. Ab-initio-Simulationen beschränkten sich daher bisher auf Reaktionen, an denen nicht mehr als fünf Partikel beteiligt sind. Derartige Simulationsverfahren kommen ohne äußere, experimentell zu bestimmende Parameter aus.
Mithilfe eines neuen Rechenverfahrens ist es Wissenschaftlern an den Universitäten in Bonn und Bochum, des Forschungszentrums Jülich sowie zweier US-amerikanischer Universitäten nun gelungen, einen deutlich komplexeren Vorgang nachzustellen. Sie untersuchten die als Streuung bezeichnete Ablenkung zweier Heliumkerne: eine Reaktion, die insgesamt acht Nukleonen umfasst. Für ihre Berechnungen nutzten sie einen der leistungsstärksten Supercomputer der Welt, den Superrechner JUQUEEN am Jülich Supercomputing Centre (JSC).
Den enormen Rechenaufwand verringerten sie dabei mit einem Trick: Die Forscher platzierten die beteiligten Nukleonen nicht frei im Raum, sondern auf einem virtuellen Gitter, dessen Zustand sich sehr effizient parallel mit einer großen Anzahl von Prozessoren berechnen lässt, wie sie heutige Superrechner aufweisen. Auf diese Weise steigt die Rechenzeit nicht wie bisher exponentiell, sondern nur noch quadratisch mit der Zahl der beteiligten Nukleonen an. Der Rechenaufwand für ein System mit 16 Teilchen ist somit nur viermal größer als für ein 8-Teilchen-System. Stiege die Rechenzeit dagegen exponentiell, wäre ein Supercomputer wie JUQUEEN nicht mehr nur ein paar Wochen, sondern gleich mehrere Jahrtausende beschäftigt.
Nachdem Physiker bereits vor einigen Jahren die Grundbedingungen für die Bildung von Kohlenstoff entschlüsseln konnten, rückt mit dem neuen Verfahren die Erforschung eines weiteren lebenswichtigen Entstehungsprozesses in greifbare Nähe: die Bildung von Sauerstoff, die auch schon als „heiliger Gral der Astrophysik“ bezeichnet wurde. Die Methode könnte darüber hinaus auch neue Perspektiven für Simulationsrechnungen in der Elementarteilchenphysik eröffnen, in der anstelle von Atomkernen das Verhalten von Quarks und Gluonen im Fokus steht.
FZJ / PH