Auf die Röhre gucken
Wie Nano-Objekte durch Defekte besser werden
Wie Nano-Objekte durch Defekte besser werden
Sie sind ganz leicht, doch stärker als Stahl und stabiler als ein Diamant. Sie sind nahezu unerreicht gute Wärme- und Stromleiter. Unter bestimmten Umständen werden sie sogar zu Supraleitern ohne elektrischen Widerstand: Nanoröhren aus Kohlenstoff sind - bei einem Durchmesser von wenigen Millionstel Millimetern - wahrhaft ein kleines Wunder und wecken in Industriezweigen von der Messtechnik bis zur Optoelektronik große Hoffnungen. Ein internationales Forscherteam, dem auch LMU-Wissenschaftler angehören, konnte nun zeigen, dass Defekte in den Nanoröhren das Material sogar verbessern könnten.
Gezielt eingebrachte Fehler im Aufbau sollen die elektrische Leitfähigkeit und andere Eigenschaften der Nanostrukturen je nach Bedarf verändern. Zentral für die Arbeit war die neurartige und hochkomplexe Mikroskopiertechnik TENOM. Mit deren Hilfe konnten die LMU-Forscher auch in vorangegangenen Untersuchungen verschiedene Systeme aus Nanoröhren mit höherer Auflösung als jemals zuvor untersuchen. Dabei gelang unter anderem der Nachweis, dass ein Komplex aus Nanoröhren mit dem Erbmolekül DNA ideal als Sensor für Einzelmoleküle geeignet ist - sogar im Nanobereich.
Ohne Kohlenstoff gäbe es kein Leben auf der Erde. Doch auch die Nanotechnologie verdankt diesem chemischen Element eine besonders vielversprechende Gruppe von Partikeln: die Kohlenstoffnanoröhren oder "Carbon Nanotubes". Diese hohlen Strukturen aus einer oder mehreren verschachtelten Röhren wurden erst im Jahre 1991 nachgewiesen. Sie haben einen Durchmesser von einem halben bis zwei Nanometern, sind aber um ein Vielfaches länger. Nur aus Kohlenstoff-Sechsecken aufgebaut, zeigen Nanoröhren aus Kohlenstoff eine überraschende Bandbreite an Eigenschaften.
Sie sind leichter als Aluminium, stärker als Stahl und extrem leitfähig für Wärme und Strom, bis hin zur Supraleitfähigkeit. Noch widersetzen sich die Nanoröhren weitgehend dem Einsatz in einer serienmäßigen Produktion. Doch nach Überwindung der technischen Hürden sind viele Anwendungen denkbar, unter anderem in elektronischen Bauteilen, in Verbundmaterialien sowie in der Nanomedizin - etwa beim Transport von Wirkstoffen im Körper.
"Die Anordnung der Kohlenstoffatome ist der Schlüssel zu den Eigenschaften der Nanoröhren", berichtet Achim Hartschuh vom "Center for NanoScience (CeNS) der Ludwig-Maximilians-Universiät (LMU) München. "Für ihre ebenfalls außerordentlichen optischen Eigenschaften sind aber auch die Maße entscheidend: Der geringe Durchmesser bei einer im Vergleich dazu beträchtlichen Länge macht die Strukturen quasi eindimensional. Man hat auch gezeigt, dass halbleitende Nanoröhren selbst ein optisches Spektrum produzieren. Das ist die sogenannte Photolumineszenz."
Der Physiker und sein Team untersuchen im Rahmen des Exzellenzclusters Nanosystems Initiative Munich (NIM) die Nanostrukturen mit Hilfe der "Tip-enhanced near-field optical microscopy", kurz TENOM. Bei dieser spitzenverstärkten Nahfeldmikroskopie kommt eine mikroskopisch kleine, außerordentlich scharfe Spitze aus Gold zum Einsatz, die im Fokus eines Laserstrahls steht, und ein Objekt im Abstand von wenigen Nanometern abtastet. "Wir erreichen damit eine Auflösung von etwa zehn Nanometern, was die der herkömmlichen Mikroskopie um den Faktor 30 übertrifft", berichtet Hartschuh.
So gelang ihm und seinen Forscherkollegen die Beschreibung von Nanoröhren mit einzelnen Defekten im Aufbau. "Wir konnten zeigen, dass sich die Geschwindigkeit der Elektronen dadurch ändert", so Hartschuh. "In der Nähe negativ geladener Defekte werden diese subatomaren und ebenfalls negativ geladenen Teilchen schneller, was die Leitfähigkeit des Materals beeinflusst. Den Effekt könnte man jetzt nutzen, indem man gezielt fremde Bausteine in die Nanoröhren einbringt. Diese sogenannte Dotierung wird in der Halbleiterindustrie ja bereits erfolgreich eingesetzt."
In einer vorangegangenen Studie unter Hartschuhs Leitung spürte das Forscherteam den Eigenschaften eines Komplexes aus Nanoröhren und DNA nach. Die Größenverhältnisse passen, denn auch unser Erbmolekül kann lange Fäden bilden bei einem Durchmesser von wenigen Nanometern. Werden Nanoröhren in wäßrige Lösungen gegeben, bilden sie oft Bündel - die von DNA-Molekülen wieder aufgelöst werden. Neben dieser rein technischen Funktion wird ein Komplex aus diesen beiden Strukturen aber auch als möglicher molekularer Sensor diskutiert.
"Wir haben uns die optische Antwort von Nanoröhren auf die Ummantelung durch einzelne DNA-Stränge angesehen", sagt Hartschuh. "Dabei haben wir auch den Energietransfer zwischen einzelnen Nanoröhren beobachtet. Es hat sich gezeigt, dass ein Komplex aus Nanoröhren und DNA ideal als Sensor geeignet sein könnte, möglicherweise sogar für den Nachweis einzelner Moleküle im Nanobereich. Dieses und alle anderen Ergebnisse sind wesentlich für Anwendungen der Nanoröhren in der Nanoelektronik, Nanophotonik, Nanosensorik - und für unser Verständnis physikalischer Prozesse auf der Nanometerskala."
Ludwig-Maximilians-Universität München
Weitere Infos:
- Indhira O. Maciel et.al., Electron und phonon renormalization at defect/doping sites in carbon nanotubes, Nature Materials, Oktober 2008
- Huihong Qian et.al., Visualizing the Local Optical Response of Semiconducting Carbon Nanotubes to DNA Wrapping, Nano Letters, 8, 9, 2706-2711 (2008)
- Huihong Qian et.al., Exciton energy Transfer in Pairs of Single-Walled Carbon Nanotubes, Nano Letters, 8, 5, 1363-1367 (2008)
- Gruppe Achim Hartschuh
www.cup.uni-muenchen.de/pc/hartschuh/
GWF