Autobahn für Spinwellen
Kontrolle der Spinwellen-Ausbreitung auf Nanoebene legt Grundlage für Nano-Schaltkreise.
Die Erfolgsgeschichte der Informationsverarbeitung mit bewegten Elektronen nähert sich langsam dem Ende. Der Drang zu immer kompakteren Chips stellt die Hersteller vor eine große Herausforderung, da die zunehmende Verkleinerung zum Teil unlösbare physikalische Probleme bereitet. Die Zukunft könnte in magnetischen Spinwellen liegen, die schneller als elektronische Ladungsträger sind und weniger Strom verbrauchen. Forscher des Helmholtz-Zentrums Dresden-Rossendorf und der TU Dresden konnten nun eine Methode entwickeln, um die Ausbreitung dieser Informationsträger auf der Nanoebene gezielt und einfach zu kontrollieren, was bislang nur unter hohem Energieverbrauch möglich war. Sie haben damit eine Grundlage für Nano-Schaltkreise gelegt, die auf Spinwellen aufbauen.
Abb.: In der Domänenwand, die sich in der Mitte zwischen den unterschiedlich ausgerichteten Magnetisierungen bildet, bleibt die Spinwelle gefangen. Forscher des HZDR konnten auf diese Weise ihren Ausbreitungsweg gezielt kontrollieren. (Bild: H. Schultheiß, HZDR)
Mit dem Begriff Spin bezeichnen die Wissenschaftler den Drehimpuls der Elektronen um die eigene Achse. Dadurch verhalten sich die elektrischen Teilchen wie extrem kleine Magnete. In ferromagnetischen Materialien richten sie sich parallel aus. „Lenkt man nun einen Spin in eine andere Richtung, beeinflusst das auch die Nachbarspins“, erläutert Helmut Schultheiß vom HZDR. „So entsteht eine Spinwelle, die sich durch den Festkörper fortpflanzt. Mit ihrer Hilfe lassen sich, genauso wie bei fließenden Ladungsträgern, Informationen transportieren und verarbeiten.“ Um sich im Wettrennen um die zukünftige Informationsverarbeitung durchzusetzen, werden aber Systeme benötigt, mit denen sich die Ausbreitung der Spinwellen auf der Nanoebene kontrollieren lässt. „Die bisherigen Ansätze beruhen entweder auf geometrisch vorgegebenen Leiterbahnen oder auf dem permanenten Einsatz externer Magnetfelder“, beschreibt Schultheiß den Stand der Forschung. „Bei der ersten Lösung lässt sich der Ausbreitungsweg nicht verändern, was für die Entwicklung von flexiblen Schaltkreisen jedoch nötig wäre. Mit der zweiten Methode ließe sich das Problem zwar lösen. Dafür steigt aber der Energieverbrauch enorm an.“
Den Wissenschaftlern gelang es nun, ein neues Verfahren zur gezielten Lenkung von Spinwellen zu entwickeln, indem sie grundlegende magnetische Eigenschaften ausnutzten: die Remanenz – also die Magnetisierung, die ein Festkörper nach dem Entfernen eines Magnetfelds beibehält – und die Entstehung von Domänenwänden. „Mit dem Begriff bezeichnet man den Bereich in Festkörpern, an dem unterschiedlich ausgerichtete Magnetisierungen aufeinandertreffen“, erklärt Schultheiß. In einem Experiment stellten die Forscher eine solche Domänenwand in einer Nanostruktur aus einer Nickel-Eisen-Legierung her. Mit Mikrowellen lösten sie anschließend eine Spinwelle aus. Wie ihre Untersuchungen gezeigt haben, blieben die Spinwellen einer bestimmten Frequenz in der Domänenwand gefangen, da die unterschiedlich orientierten magnetischen Bereiche als Einsperrung dienen. „Im übertragenen Sinn könnte man sagen, dass wir eine Straße mit Leitplanke konstruiert haben, auf der sich die Spinwellen kontrolliert ausbreiten“, freut sich Schultheiß über das Ergebnis.
Die Dresdner Physiker konnten aber sogar noch einen weiteren Erfolg feiern. Über kleine externe Magnetfelder weit unterhalb eines Millitesla – etwa hundertmal schwächer als ein handelsüblicher Hufeisenmagnet – manipulierten sie den Verlauf der Domänenwand. Und damit gleichzeitig die Ausbreitung der Spinwellen. „Darauf könnte das Design rekonfigurierbarer Nano-Schaltkreise aufgebaut werden, die über Magnonen funktionieren“, schätzt Schultheiß ein. Trotzdem wird es, nach Ansicht des Forschers, bis zur Anwendung aber wohl noch einige Jahre dauern. „Wir sind immer noch im Stadium der Grundlagenforschung. Unsere Ergebnisse zeigen allerdings, dass wir uns auf einem guten Weg befinden.“
HZDR / RK