„Ballistische Spinverstärkung“ nachgewiesen
Erstmals Elektronenspins in zwei-dimensionales Elektronengas injiziert – mit vielfach höherer Effizienz als theoretisch vorhergesagt.
Die Nachfrage nach immer besseren Transistoren ist riesig. Weltweit arbeitet man daher an neuen Konzepten, um die Leistungsfähigkeit von Halbleiterbauelementen zu verbessern. Hoffnungen ruhen auf der Entwicklung einer Spinelektronik, die den Eigendrehimpuls der Elektronen zusätzlich zu deren elektrischer Ladung nutzt. Bislang war es aber nicht möglich, die Elektronenspins wirkungsvoll in ein zwei-dimensionales Elektronengas – Herzstück der modernsten Transistortechnologien – zu injizieren. Physikern der Uni Regensburg ist dies nun erstmals gelungen; mit überraschendem Ergebnis: Die Effizienz lag um ein Vielfaches höher als von der Theorie vorhergesagt.
Abb.: Die ferromagnetischen (FM) Injektor- und Detektorkontakte sind mit Pfeilen markiert. Durch einen der ferromagnetischen Kontakte fließt ein Strom I und injiziert einen Spinstrom in das Elektronengas. (Bild: UR)
Herkömmliche Transistoren nutzen ausschließlich die Ladung von Elektronen, um den Stromfluss zu kontrollieren und auf diese Weise logische Operationen auszuführen. In der Spinelektronik versucht man auch den Elektronenspin zu nutzen, indem man die entsprechenden Eigenschaften der Elektronen manipuliert. Deren magnetisches Moment orientiert sich entweder parallel (spin-up) oder anti-parallel (spin-down) zu einem extern angelegten Magnetfeld.
Um diesen quantenmechanischen Effekt in nichtmagnetischen elektrischen Bauelementen einsetzen zu können, müssen die Elektronenspins zunächst einmal eingebracht werden. Dies geschieht beispielsweise durch einen elektrischen Strom, der durch zwei ferromagnetische Kontakte in den Halbleiter fließt und dadurch mehr Spins der einen als der anderen Sorte (spin-up oder spin-down) in den Halbleiter injiziert: Ein Spinstrom fließt somit im Halbleiter.
Von einer effizienten Nutzung in Transistoren war man bislang allerdings noch entfernt. Hierfür müssen die Elektronenspins in ein zwei-dimensionales Elektronengas injiziert werden. Solche Elektronengase, deren Ladungsträgerdichte über eine Gateelektrode gesteuert werden kann (Feldeffekt), sind das Herzstück der CMOS (complimentary metal oxide semiconductor) Transistortechnologie; heutzutage die meistgenutzte Technik für integrierte Schaltkreise.
Regensburger Forschern um Mariusz Ciorga, Dominiqe Bougeard und Dieter Weiss gelang es, Elektronenspins mit hoher Effizienz in ein zweidimensionales Elektronengas in einer Galliumarsenid-Halbleiterschichtstruktur einzubringen. Sie konnten in ihren Experimenten die Spininjektion mit Hilfe einer angelegten Spannung steuern. Diese war maximal, wenn Elektronen aus einem ferromagnetischen Kontakt direkt in den zweidimensionalen Kanal injiziert werden konnten und nicht vorher zwischen Gate und Kanal „hängenbleiben“.
Die Ursache für diesen Verstärkungseffekt hängt nach Ansicht der Forscher mit der ballistischen Bewegung der Elektronen im Bereich der Injektionsstelle zusammen. Die Elektronen bewegten sich unter den experimentellen Bedingungen eher wie Kugeln in einem Flipperautomaten, also ballistisch, und nicht – wie bislang angenommen – diffusiv, wie zum Beispiel ein Tropfen Milch im Kaffee. Der Nachweis der „ballistischen Spinverstärkung“ ist ein weiterer wichtiger Schritt hin zur Nutzung des Elektronenspins für zukünftige Technologien
UR / OD