02.06.2025

Bessere Katalysatoren für grünen Wasserstoff

An den großen inneren Oberflächen von MXenen können sich katalytisch aktive Partikel anheften.

Grüner Wasserstoff soll im Energiesystem der Zukunft eine wichtige Rolle spielen: als chemischer Energiespeicher, als Rohstoff für die Chemieindustrie und eventuell auch für klimafreundliche Treibstoffe. Grüner Wasserstoff lässt sich nahezu klimaneutral erzeugen, wenn die Energie für die elektrolytische Aufspaltung von Wasser in seine Elemente aus Sonne oder Wind kommt. Zusätzlich werden jedoch spezielle Katalysatoren benötigt, um die Entwicklung von Wasserstoff und Sauerstoff an den beiden Elektroden zu beschleunigen. Vor allem die Sauerstoffentwicklungsreaktion ist träge und würde ohne gute Katalysatoren deutlich mehr Energie kosten. Solche Katalysatoren bestehen jedoch heute noch aus Edelmetallen, die selten und teuer sind. Damit grüner Wasserstoff in den benötigten Mengen und preisgünstig hergestellt werden kann, werden jedoch Katalysatoren aus reichlich verfügbaren Elementen benötigt.

Abb.: Links ist die blätterteigartige Struktur der MXene-Probe unter dem...
Abb.: Links ist die blätterteigartige Struktur der MXene-Probe unter dem Rasterelektronenmikroskop zu sehen. Rechts das resultierende Kompositmaterial nach der Einlagerung von Kobalt-Eisen in die MXene-Struktur.
Quelle: HZB

Weitere Nachrichten zum Thema

Photo
Photo
Photo

Das Team um Michelle Browne am Helmholtz Zentrum Berlin entwickelt raffinierte Alternativen, die auf MXenen basieren. MXene sind blätterteigartige Strukturen aus Kohlenstoff und Übergangsmetallen. Katalytisch aktive Partikel könnten sich an die inneren Oberflächen in MXenen anlagern und dadurch eine stärkere katalytische Wirkung entfalten. Can Kaplan hat als Basis dafür unterschiedliche Varianten eines Vanadiumcarbid-MXenes verwendet. Dazu nutzte er einen Forschungsaufenthalt im Labor der schwedischen Kooperationspartner an der Linköping University. „Wir konnten dort zwei MXene-Varianten synthetisieren, reines V2CTx und V1,8CTx mit zehn Prozent Vanadiumvakanzen. Die Vanadium-Fehlstellen sorgen dafür, dass in dieser Variante die innere Oberfläche noch einmal deutlich größer ausfällt“, sagt Can Kaplan.

Im Labor von Michelle Browne entwickelte Kaplan dann ein mehrschrittiges chemisches Verfahren, um Katalysatorpartikel aus Co0,66Fe0,34 in die MXene einzubetten. Dass dies gelang, zeigen die Aufnahmen der Proben mit dem Rasterelektronenmikroskop: die reinen MXene zeichnen sich durch eine blätterteigartige Struktur aus, die sich durch Einlagerung von Kobalt-Eisen-Partikeln deutlich veränderte. Dann untersuchte das Team die Wirkung der unterschiedlichen Katalysator-Proben im Einsatz während der Elektrolyse. Die Ergebnisse waren sehr eindeutig: Auch Kobalt-Eisen wirkt bereits als Katalysator. Eingebettet in MXene steigt jedoch die katalytische Wirkung deutlich an. Und nochmals stärker wird sie, wenn Kobalt-Eisen in ein MXene mit zahlreichen Fehlstellen eingebettet wird.

Mit In-situ-Röntgenabsorptionsspektroskopie an der Synchrotronquelle SOLEIL in Frankreich konnte das Team verfolgen, wie sich die Oxidationszahlen von Kobalt und Eisen im Lauf der elektrolytischen Reaktion veränderte. „Wir haben diesen Katalysator sowohl im Labormaßstab getestet als auch in einem deutlich größeren Elektrolyseur“, betont Kaplan. „Das macht unsere Ergebnisse wirklich aussagekräftig und auch interessant für eine industrielle Anwendung.“

Aktuell hat die Industrie MXene als Trägermaterial für katalytisch aktive Partikel noch nicht auf dem Schirm“, sagt Michelle Browne. „Wir leisten hier Grundlagenforschung, die aber eine klare Anwendungsperspektive hat: Unsere Ergebnisse haben nun erste Einblicke in das komplexe Zusammenspiel zwischen Trägerstruktur, Einbettung von katalytisch aktiven Partikeln und katalytischer Aktivität geliefert.“ Ihr Fazit ist: Bei der Entwicklung von innovativen, sehr effizienten und preisgünstigen Katalysatoren lohnt es sich, auch MXene zu betrachten.

HZB / JOL

Anbieter des Monats

Dr. Eberl MBE-Komponenten GmbH

Dr. Eberl MBE-Komponenten GmbH

Das Unternehmen wurde 1989 von Dr. Karl Eberl als Spin-off des Walter-Schottky-Instituts der Technischen Universität München gegründet und hat seinen Sitz in Weil der Stadt bei Stuttgart.

Veranstaltung

Spektral vernetzt zur Quantum Photonics in Erfurt

Spektral vernetzt zur Quantum Photonics in Erfurt

Die neue Kongressmesse für Quanten- und Photonik-Technologien bringt vom 13. bis 14. Mai 2025 internationale Spitzenforschung, Industrieakteure und Entscheidungsträger in der Messe Erfurt zusammen

Meist gelesen

Themen