01.02.2024

Bessere Leistung von Feststoffbatterien

Silizium zeigt Potenzial als alternatives Elektrodenmaterial.

Leistungsfähige Batterien werden für zahlreiche Anwendungsgebiete benötigt, der Bedarf wächst rasant. Daher gehört heute die Erforschung und Entwicklung von elektrochemischen Energiespeichern unter anderem für die Elektromobilität zu den wichtigsten Arbeitsgebieten der Materialwissenschaften weltweit. Dabei stehen nicht nur die Ladekapazitäten und Ladegeschwindigkeiten der Batterien im Fokus, sondern auch die Lebensdauer, die Sicherheit, die Verfügbarkeit der Rohstoffe sowie die CO2-Bilanz. Vor diesem Hintergrund haben die Chemiker Hanyu Huo und Jürgen Janek (beide Justus-Liebig-Universität Gießen), die Physikerin Kerstin Volz (Philipps-Universität Marburg), der Materialwissenschaftler Dierk Raabe (Max-Planck-Institut für Eisenforschung, Düsseldorf) und der theoretische Materialwissenschaftler Chandra Veer Singh (University of Toronto, Kanada) mit ihren Teams die Eigenschaften von Silizium-Anoden in Feststoffbatterien untersucht. Sie kommen zu dem Schluss, dass diese Anoden großes Potenzial haben, um die Leistungsfähigkeit dieser Batterien zu verbessern. 


Abb.: Vorbereitung zur Untersuchung der Materialstruktur einer Batterie...
Abb.: Vorbereitung zur Untersuchung der Materialstruktur einer Batterie während des Betriebs mittels Röntgenbeugung
Quelle: JLU / R. K. Wegst

Ihre Ergebnisse zur Stabilität, zur Chemomechanik und zum Alterungsverhalten von Silizium-Elektroden haben sie nun publiziert. Für die Untersuchungen kombinierte das Forschungsteam verschiedene experimentelle und theoretische Methoden, um den Transport von Lithium in der Elektrode, die starke mechanische Volumenänderung von Silizium während der Lade- und Entladevorgänge und die Reaktion mit dem festen Elektrolyten quantitativ zu bewerten. „Diese umfassende und grundlegende Analyse ist ein wichtiger Schritt auf dem Weg zum möglichen Einsatz von Silizium als Elektrodenmaterial in Feststoffbatterien, der derzeit international intensiv erforscht wird“, so Janek, einer der Autoren der Studie.

Die Feststoffbatterie ist eine Weiterentwicklung der Lithium-Ionen-Batterie, deren Funktion gegenwärtig mit einem flüssigen, organischen Elektrolyten erreicht wird. Das Ziel ist es, hier einen festen Elektrolyten einzusetzen, was noch bessere Speichereigenschaften, längere Lebensdauern und erhöhte Sicherheit verspricht. Die Entwicklung von Feststoffbatterien wird seit etwa zehn Jahren durch intensive Forschungsarbeiten weltweit vorangetrieben, das Gießener Team um Jürgen Janek gehört hier zu den führenden akademischen Gruppen.

Während des Ladevorgangs einer Batterie wird Lithium in der negativen Elektrode, der Anode, aufgenommen. „Dabei dehnt sich das Silizium an der Anode der Batterie um mehrere 100 Prozent aus, was zu erheblichen mechanischen Problemen in einer Feststoffbatterie führt“, erklärt Janek. „Zudem reagieren die favorisierten Festelektrolyte mit dem gespeicherten Lithium, was ebenfalls zu Kapazitätsverlusten führt. Unsere jetzt erschienene Arbeit bewertet diese Aspekte erstmals quantitativ im Detail.“

Bei der Entwicklung von leistungsfähigeren Feststoffbatterien, die mit herkömmlichen Lithiumionenbatterien konkurrieren können, soll die Anode durch ein Material mit besonders großer Speicherkapazität gebildet werden – idealerweise durch ein Lithiummetall. Dieses birgt jedoch unter Einsatzbedingungen das Risiko von internen Kurzschlüssen, so dass Silizium als Alternative mit ähnlich hoher Speicherkapazität untersucht wird. „Unsere Ergebnisse zeigen, dass die Silizium-Anode ein erhebliches Potenzial für den Einsatz in Feststoffbatterien hat, das durch geschickte Anpassungen der auftretenden Grenzflächen genutzt werden könnte“, sagt Janek. Erforderlich seien zusätzliche Materialkonzepte, um die chemische und chemomechanische Alterung von Silizium-Anoden zu überwinden. Ein Teil dieser Lösung könnte eine Polymerzwischenschicht sein, wie das Forschungsteam aus Deutschland und Kanada bereits zeigen konnte.

Janek und Volz arbeiten bereits seit einigen Jahren eng in der Erforschung neuer Batteriematerialien zusammen. Die nun erschienene Arbeit erforderte den Einsatz zusätzlicher theoretischer Methoden, die am MPI für Metallforschung in der Abteilung von Raabe (Chemomechanische Phasenfeld-Simulationen) und der Arbeitsgruppe von Singh an der University of Toronto (DFT-Rechnungen) verfügbar sind.

U. Gießen / DE


Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen