Biomolekularer Baustein in der Laser-Zange
Laserblitze richten Moleküle gezielt räumlich aus.
Laserblitze, die schwebende Moleküle kurz in die Zange nehmen, um sie gezielt im Raum auszurichten – das mag nach einem originellen akademischen Kunststückchen klingen. Doch die Methode, die das Team um DESY-Forscher Jochen Küpper entwickelt hat, besitzt großes Potenzial für die Forschung. Denn Moleküle exakt in eine bestimmte räumliche Ausrichtung zu bringen, ist eine wichtige Voraussetzung, um deren extrem schnelle Aktionen detailliert verfolgen und filmen zu können. Aktuell ist es den Forschern erstmals gelungen, per Laserpuls ein relativ komplexes Gebilde feldfrei stark auszurichten – das Biomolekül Indol. In Zukunft sollten sich auch andere komplexe Moleküle mit der neuen Methode ins Visier nehmen lassen, zum Beispiel Aminosäuren, Neurotransmitter oder Vitamine, aber womöglich auch ganze Proteine.
Schon seit längerem ist es grundsätzlich möglich, auch komplexe Moleküle mit Hilfe von kurzen Laserpulsen in der Zange zu halten und auszurichten. Doch für gewöhnlich muss dafür der Laser die ganze Zeit aktiv sein, was für bestimmte Art von Experimenten sehr störend ist – insbesondere für Versuche, die das chemische Verhalten eines Moleküls genauestens verfolgen sollen. „Wir haben eine neue Methode entwickelt, bei denen der Laser, nachdem er das Molekül über eine lange Anstiegszeit des Pulses ausgerichtet hat, rasch wieder ausgeschaltet wird“, erläutert Küpper. „Dadurch lässt sich das ausgerichtete Molekül ungestört vom Laserfeld untersuchen.“
Küppers Team war es mit ähnlichen Methoden bereits gelungen, ein einfaches stäbchenförmiges Molekül festzuhalten und zu manipulieren – Carbonylsulfid, bestehend aus je einem Sauerstoff-, Kohlenstoff- und Schwefelatom. Konkret konnte die Arbeitsgruppe das winzige Stäbchen mit einem kurzen Laser-Kick in Rotation versetzen und dessen quantenmechanische Drehung mit einem speziellen Nachweisverfahren filmen.
Jetzt gelang es dem Team, ein deutlich komplexer geformtes Molekül per Laserpuls auszurichten: Indol ist ein Biomolekül, das unter anderem bei der Absorption von UV-Strahlung im Körper eine Rolle spielt. „Eine der Herausforderungen war, unsere Laser schnell genug abschalten zu können, nachdem sie das Indol ausgerichtet haben“, erklärt Küpper. Dieses Abschalten gelingt innerhalb weniger Pikosekunden. Erzeugt wurde der abrupte Stopp durch die geschickte Ansteuerung von LCD-Displays.
Nach dem Abschalten steht zwar nur ein kleines Zeitfenster offen, bevor sich das Molekül wieder aus seiner Ausrichtung herausdreht. Doch die Zeit ist lang genug, um das Indol mit UV-Licht anzuregen und seine Reaktion mit raffinierten Methoden zu vermessen. Eine möglichst präzise Ausrichtung ist dabei wichtig, um die einzelnen Bestandteile des Moleküls richtig auflösen zu können – denn es macht einen erheblichen Unterschied bei den Analysen, ob es „steht“ oder „liegt“.
Allerdings erwies sich der Nachweis der Indol-Ausrichtung als anspruchsvoll. Dafür haben die Forscher das Molekül mit hochintensivem Infrarotlicht bestrahlt, damit es in viele Bruchstücke zerfällt. Dabei wurden zahlreiche Wasserstoff- und Kohlenstoffatome abgesprengt, deren Impulse sich dann mit speziellen Detektoren nachweisen ließen. „Um aus diesen Messdaten auf die ursprüngliche Ausrichtung des Indols schließen zu können, mussten wir ein ausgefeiltes Analyseverfahren entwickeln“, so Küpper.
In künftigen Experimenten wollen die Wissenschaftler die Positionen der einzelnen Atome im Indol und die Rolle deren jeweilige Bewegungen bei den Reaktionen möglichst genau bestimmen. Doch das Verfahren verspricht noch deutlich mehr. „Im Prinzip ließen sich damit alle möglichen Moleküle ausrichten und untersuchen, zum Beispiel Vitamine, Neurotransmitter oder vielleicht sogar Proteine“, schätzt Küpper. „Damit haben wir der Wissenschaft ein neues Analyse-Werkzeug zur Hand gegeben, um die Eigenschaften solcher Moleküle in Zukunft detaillierter zu verstehen.“
DESY / RK
Weitere Infos
- Originalveröffentlichung
T. Mullins et al.: Picosecond pulse-shaping for strong three-dimensional field-free alignment of generic asymmetric-top molecules, Nat. Commun. 13, 1431 (2022); DOI: 10.1038/s41467-022-28951-z - Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg