Bunte, schnelle Pulse
Spektrum und Entstehung ultrakurzer Laserpulse in Echtzeit bestimmt.
Die intensivsten und schnellsten optischen Signale – Blitze aus einem Ultrakurzpulslaser – sind heute das Präzisionswerkzeug der Grundlagenforschung, Automobilindustrie und Augenheilkunde. Ihr Licht unterscheidet sich grundlegend von üblichen, einfarbigen Laserstrahlen: Es besteht aus einem Regenbogenspektrum, und je kürzer der Puls, desto reicher die Farben. Wissenschaftler der Universität Göttingen und der University of California in Los Angeles haben nun erstmals die Entstehung dieses „Regenbogens“ in Echtzeit und mit einer Bildrate von 90 Millionen Schnappschüssen pro Sekunde gefilmt. Die Ergebnisse könnten relevant für die Entwicklung zukünftiger Laser sein.
Abb.: Zeitlich-spektrale Messung das Starts eines Ultrakurzpulslasers: Am Übergang vom fluktuierenden (unten) zum stabilen Betrieb (oben) wächst eine von vielen benachbarten Fluktuationen stark an. (Bild: G. Herink, U. Göttingen)
Ein stabil laufender Ultrakurzpulslaser zeichnet sich durch eine streng periodische Kette von ausgesandten Lichtblitzen aus. Der Start eines jeden Laservorgangs hingegen ist unregelmäßig, hochgradig komplex und einzigartig – er entwickelt sich aus einem Gewirr zufälliger Fluktuationen. Um diesen Vorgang zu verstehen, nutzten die Forscher die derzeit schnellste Spektrometertechnik weltweit: Sie erfasst lückenlos das Stakkato von hunderttausenden von Pulsen mit Abständen von wenigen Milliardstel Sekunden und macht das Farbspektrum jedes einzelnen Pulses sichtbar.
Die Wissenschaftler verwendeten bei ihrer Messung einen Trick: In einer Glasfaser läuft das Licht einer jeden Farbe mit einer anderen Geschwindigkeit. Ein kurzer „weißer“ Puls zerfließt so entsprechend seiner Farben zu einem zeitlichen Regenbogen. Mit einer kilometerlangen Glasfaser konnte das Team so die Farbspektren jedes Pulses in gestreckte Zeitsignale umwandeln und mit spezieller Hochgeschwindigkeitselektronik festhalten. Somit ließ sich die komplette Entstehung des Regenbogenspektrums vieler Laserstarts beobachten und detailliert analysieren.
Abb.: Blick in einen Ultrakurzpulslaser. Aus zufälligen Fluktuation wächst eine periodische Kette intensiver Laserpulse. Entscheidend dafür ist ein nichtlinearer Prozess im Titan-Saphir-Kristall (Mitte; Bild: G. Herink, U. Göttingen)
„Diese Echtzeitspektroskopie schließt eine Lücke in der Laserdiagnostik“, erläutert der Erstautor der Studie, Georg Herink vom IV. Physikalischen Institut der Universität Göttingen. „Wir erhalten in Sekundenbruchteilen einmalige Einblicke in Lasersysteme und kurzlebige nichtlineare Effekte.“ So entdeckten die Forscher beispielsweise einen bisher unbekannten Mechanismus, bei dem das Wechselspiel zweier kleinerer Lichtpulse den Laser startet. Auch beobachteten sie, dass sich nicht zwangsläufig die intensivste Fluktuation zum Riesenregenbogen entwickelt: Aufgrund der komplexen Dynamik schafft es manchmal auch eine schwächere Störung und überholt im richtigen Zeitpunkt den ursprünglichen Favoriten.
GAU / DE