CONUS engt den Spielraum für neue Physik ein
Auf der Suche nach neuartigen Wechselwirkungen von Neutrinos.
Es gibt eine ganze Reihe von Gründen dafür, dass das Standardmodell der Teilchenphysik nicht vollständig ist. Eine sehr interessante Option sind hierbei neuartige Wechselwirkungen von Neutrinos. Dabei würde es sich um sehr kleine Effekte handeln, die schwer nachweisbar sind. Das CONUS-Experiment des MPI für Kernphysik sucht am Kernkraftwerk Brokdorf nach diesen Effekten, und die daran beteiligten Forscher haben nun erste Ergebnisse präsentiert, die für bestimmte theoretische Richtungen die bislang besten Grenzen liefern.
CONUS hat im April 2018 den Messbetrieb aufgenommen und nutzt für seine Messungen Antineutrinos, die im Reaktor als Nebenprodukt entstehen. Der Abstand des experimentellen Aufbaus, der sich im inneren Sicherheitsbereich der Anlage befindet, zum Reaktorkern beträgt nur 17 Meter. Dadurch steht ein hoher Fluss von 24 Billionen Neutrinos pro Sekunde und Quadratzentimeter zur Verfügung. Die Kombination von starker Quelle, einer speziellen Abschirmung gegen Störstrahlung aus der Umgebung und optimierten Halbleiterdetektoren aus Germanium macht das Experiment zu einem weltweit führenden Projekt auf diesem Gebiet.
„Das Design der Abschirmung basiert auf der langjährigen Erfahrung des MPIK mit hochreinen Materialien, deren Radioaktivität mehrere Größenordnungen unterhalb der natürlichen Umgebungsstrahlung liegt. So konnten wir im inneren Bereich des Reaktors oberflächennah Bedingungen erreichen, für die man üblicherweise tief unter die Erde muss, wie zum Beispiel in das Gran Sasso Untergrundlabor“, erläutert Manfred Lindner, Direktor der Abteilung Teilchen- und Astroteilchenphysik am MPIK.
Für die aktuell präsentierten Ergebnisse verwendeten die Forscher Daten aus Phasen, in denen der Reaktor an- und abgeschaltet war. So lassen sich die gesuchten Prozesse genauer untersuchen und die Möglichkeiten neuartiger Physik weiter als bisher einschränken. Eine Materialeigenschaft des Germaniums, das Quenching, limitiert bisher die Messgenauigkeit. Die gemessene Ionisationsenergie im Halbleiterdetektor ist für Stöße der Neutrinos an Atomkernen geringer als von Elektronen gleicher Energie. Diesen Verlust-Effekt muss man in der Analyse und Auswertung der Daten entsprechend berücksichtigen.
„Deshalb haben wir zum besseren Verständnis der Daten am Reaktor parallel Messungen an der Physikalisch-Technischen Bundesanstalt in Braunschweig durchgeführt, um den Quenching-Effekt präziser als bisher zu bestimmen“, so Werner Maneschg vom MPIK. Kombiniert mit weiteren Datensätzen wird dies der CONUS-Kollaboration erlauben, die Ergebnisse in Zukunft weiter zu verfeinern und die betreffenden Wechselwirkungen noch genauer unter die Lupe zu nehmen.
Die neuartigen Wechselwirkungen der Neutrinos lassen sich – ähnlich wie die schwache Kraft im Standardmodell der Teilchenphysik – bei niedrigen Energien als eine spezielle Art von Wechselwirkungen beschreiben, Theoretikern als „effektive vier-Fermi-Wechselwirkungen“ bekannt. Diese sogenannten NSI-Operatoren kann man weiter nach ihren Eigenschaften bezüglich der Raum-Zeit klassifizieren. Die neuen Ergebnisse des CONUS-Experiments liefern nun im Falle einiger dieser Kanäle die weltweit engsten Grenzen für neue Physik. Die erzielten Ausschlussbereiche für NSI-Operatoren entsprechen Grenzen für eine Kombination aus den Massen und Kopplungsstärken von theoretisch gut motivierten neuartigen Bosonen. Für andere Kanäle werden bisherige Ergebnisse bestätigt.
Der in diesem Jahr weiter verbesserte CONUS-Messaufbau nimmt derzeit bei eingeschaltetem Reaktor Daten bis zum Jahresende. Die 2022 anstehende Abschaltung des Kraftwerks in Brokdorf erlaubt danach eine sehr sorgfältige Messung des Untergrunds, sodass mit weiteren wichtigen Ergebnissen des CONUS-Projekts zu rechnen ist.
MPIK / RK
Weitere Infos
- Originalveröffentlichung
CONUS Collaboration: Novel constraints on neutrino physics beyond the standard model from the CONUS experiment, arXiv:2110.02174 [hep-ph] - CONUS, Teilchen- und Astroteilchenphysik, Max-Planck-Institut für Kernphysik, Heidelberg
Weitere Beiträge
- Neutrino-Detektor en miniature (pro-physik.de Nachrichten, 4. November 2020)
- Marianne Göger-Neff, Lothar Oberauer und Stefan Schönert, Auf die Mischung kommt es an (Physik Journal, Juli 2012, S. 18) PDF
- Manfred Lindner und Christian Weinheimer, Den Geisterteilchen auf der Spur (Physik Journal, Juli 2011, S. 31) PDF