Das Alter kleiner Asteroiden
Ergebnisse des Einschlagexperiments auf der Oberfläche des Asteroiden Ryugu.
Die Datierung der Oberflächen von Himmelskörpern erfolgt durch das Zählen der Größe und Häufigkeit von Kratern. Diese Altersschätzungen können sehr ungenau sein, da man nicht weiss, wie das Material der Oberfläche eines Asteroiden auf einen Einschlag von einem anderen Himmelskörper reagiert. Um die Geschichte des Asteroiden Ryugu zu erforschen, wurde die Raumsonde Hayabusa2 entwickelt, die auch Proben gesammelt und sie zur Laboranalyse zur Erde zurückgebracht hat. Beteiligt am Projekt sind Martin Jutzi und Sabina Raducan, beide vom Physikalischen Institut der Universität Bern. Nun präsentiert das Team unter ihrer Leitung neue Erkenntnisse zur Entstehung und Entwicklung von Asteroiden.
Zur Erkundung der Asteroideneigenschaften wurde im Rahmen der Weltraummission Hayabusa2 ein Small Carry-on Impactor auf die Oberfläche des Asteroiden Ryugu geschossen. „Der durch den Einschlag erzeugte Krater erwies sich als viel größer als erwartet. Wir haben also versucht, das Ergebnis des Einschlags auf Ryugu anhand von Simulationen zu reproduzieren, um herauszufinden, welche Eigenschaften das Material auf der Oberfläche des Asteroiden haben muss“, erklärt Martin Jutzi. Die Beschaffenheit und die Größe eines Einschlagkraters auf einem Asteroiden werden durch verschiedene Faktoren beeinflusst. Zum einen durch die spezifischen Eigenschaften des Projektils, zum anderen durch die Eigenschaften des Asteroiden, beispielsweise dessen Festigkeit oder Schwerkraft.
„Die Größe und Beschaffenheit des Kraters, der aus dem Einschlag resultiert, kann eine direkte Diagnose der Materialeigenschaften und der oberflächennahen Struktur des Asteroiden liefern“, sagt Jutzi. Die Untersuchung des Kraterbildungsprozesses habe daher wichtige Auswirkungen auf das Verständnis der geologischen und geophysikalischen Entwicklung von Asteroiden. „Wie Kraterbildung bei niedriger Schwerkraft funktioniert, blieb bisher weitgehend unerforscht. Das liegt daran, dass diese Einschlagsbedingungen in Laborexperimenten auf der Erde nicht nachgebildet werden können“, sagt Sabina Raducan. Die Forschenden zeigen, dass der Asteroid wahrscheinlich eine sehr lockere innere Struktur hat und nur durch sehr kleine Kohäsionskräfte und Gravitationswechselwirkungen zusammengehalten wird. „Geht man von diesen Bedingungen aus, sind wir in der Lage, mit unseren numerischen Simulationen das Ergebnis des Einschlags auf Ryugu zu reproduzieren“, so Raducan.
Die aus den Ergebnissen abgeleiteten Beziehungen zwischen den Projektil-Eigenschaften und Kratergröße deuten darauf hin, dass die Oberflächen kleiner Asteroiden sehr jung sein müssen. „Unsere Ergebnisse zeigen zudem, dass eine geringe Kohäsion die Kraterbildung stark beeinflussen kann. Auf Ryugu gibt es verschiedene geologische Oberflächeneinheiten, die ein unterschiedliches Alter haben. Dies könnte auf den Einfluss der Kohäsion zurückzuführen sein“, ergänzt Jutzi.
Die Arbeit ist auch für wichtig für die Nasa-Mission „Double Asteroid Redirection Test“ (DART), an der die beiden ebenfalls beteiligt sind. DART ist der weltweit erste vollumfängliche Test zur planetarischen Verteidigung gegen mögliche Asteroideneinschläge auf der Erde. Im Rahmen der DART-Mission ist am 27. September 2022 eine Weltraumsonde mit dem Asteroiden Dimorphos, um diesen von seiner Umlaufbahn abzulenken. „Die Erkenntnisse der Simulationen zum Einschlag auf Ryugu hilft auch bei der Analyse der Resultate der DART Mission weiter“, erklärt Jutzi. „Wir sind daran, die neue entwickelten Modelle auf DART anzuwenden um damit Erkenntnisse über die Eigenschaften von Dimorphos zu gewinnen. Unsere ersten Simulationen sehen sehr vielversprechend aus“, ergänzt Raducan.
U. Bern / JOL