Das Beste von Batterien und Kondensatoren
MXene können große Mengen Energie schnell elektrochemisch speichern und abgeben.
Eine neue Materialklasse kann elektrische Energie sehr schnell speichern. Es handelt sich um MXene, das sind zweidimensionale Titankarbide. Wie eine Batterie speichern sie durch elektrochemische Reaktionen große Mengen elektrischer Energie – aber im Gegensatz zu Batterien können sie in Sekundenschnelle geladen und entladen werden. In Zusammenarbeit mit der Drexel-Universität hat ein Team am Helmholtz-Zentrum Berlin (HZB) gezeigt, dass die Einlagerung von Harnstoffmolekülen zwischen den MXene-Schichten die Kapazität solcher „Pseudokondensatoren“ um mehr als fünfzig Prozent erhöhen kann. An BESSY II haben sie analysiert, welche Veränderungen der MXene-Oberflächenchemie nach der Harnstoffeinlagerung dafür verantwortlich sind.
Um elektrische Energie zu speichern, gibt es unterschiedliche Lösungen: Elektrochemische Batterien auf Lithium-Basis speichern große Energiemengen, benötigen aber lange Ladezeiten. Superkondensatoren hingegen können elektrische Energie extrem schnell aufnehmen oder abgeben - speichern aber wesentlich weniger elektrische Energie.
Eine weitere Option ist seit 2011 in Sicht: An der Drexel University, USA, wurde eine neue Klasse von 2D-Materialien entdeckt, die enorme Ladungsmengen speichern können. Es handelt sich MXene, Nanoblätter aus Ti3C2Tx -Molekülen, die ähnlich wie Graphen ein zweidimensionales Netzwerk bilden. Während Titan und Kohlenstoff Elemente sind, bezeichnet Tx verschiedene chemische Gruppen, die die Oberfläche versiegeln, zum Beispiel OH-Gruppen. MXene sind hochleitfähige Materialien mit hydrophiler Oberfläche. In Wasser bilden sie Dispersionen, die an schwarze Tinte erinnern.
Ti3C2Tx kann so viel Energie speichern wie eine Batterie, kann aber innerhalb von Zehntelsekunden geladen oder entladen werden. Während ähnlich schnelle (oder schnellere) Superkondensatoren ihre Energie durch elektrostatische Adsorption von elektrischen Ladungen absorbieren, wird die Energie in MXenen in chemischen Bindungen an ihren Oberflächen gespeichert. Diese Art der Energiespeicherung ist viel effizienter.
In Zusammenarbeit mit der Gruppe um Yuri Gogotsi an der Drexel-Universität haben die HZB-Wissenschaftler Tristan Petit und Ameer Al-Temimy nun erstmals weiche Röntgenabsorptionsspektroskopie an BESSY II genutzt, um MXene-Proben an den Experimentierstationen LiXEdrom und X-PEEM zu untersuchen. Sie konnten die chemische Umgebung von MXene-Oberflächengruppen im Vakuum, aber auch direkt in Wasserumgebung analysieren. Sie untersuchten Proben aus reinen MXenen und aus MXenen mit eingelagerten Harnstoffmolekülen und fanden dramatische Unterschiede.
Das Vorhandensein von Harnstoffmolekülen verändert die elektrochemischen Eigenschaften von MXenen signifikant. Die Flächenkapazität erhöhte sich auf 1100 mF/cm2, was 56 Prozent höher ist als bei ähnlich präparierten reinen Ti3C2Tx -Elektroden.
Die XAS-Analysen bei BESSY II zeigten, dass sich die Oberflächenchemie durch die Anwesenheit der Harnstoffmoleküle verändert. „Am X-PEEM konnten wir auch den Oxidationszustand der Ti-Atome auf den Ti3C2Tx -Oberflächen beobachten. Dieser Oxidationszustand erhöhte sich durch die Anwesenheit von Harnstoff, was die Speicherung von mehr Energie erleichtern könnte“, sagt Ameer Al-Temimy, der die Messungen im Rahmen seiner Doktorarbeit durchführte.
HZB / DE
Weitere Infos
- Originalveröffentlichung
A. Al-Temimy et al.: Enhancement of Ti3C2 MXene Pseudocapacitance after Urea Intercalation Studied by Soft X-ray Absorption Spectroscopy, J. Phys. Chem., online 6. Februar 2020; DOI: 10.1021/acs.jpcc.9b11766 - Nanospektroskopie (S. Raoux), Helmholtz-Zentrum Berlin für Materialien und Energie