Das Neutron ist geschrumpft
Neue Methode liefert signifikant kleineren Radius als der bisherige Literaturwert.
Die Größe von Neutronen ist nicht direkt messbar: Man kann sie nur aus Experimenten mit anderen Teilchen bestimmen. Während solche Bestimmungen bisher auf alten Messungen mit schweren Atomen auf sehr indirekte Weise vorgenommen wurden, ist ein Team der theoretischen Physik der Ruhr-Universität Bochum (RUB) einen anderen Weg gegangen. Die Forscher kombinierten ihre sehr genauen Berechnungen mit neueren Messungen an leichten Kernen und kamen so zu einer direkteren Methodik. Ihre Ergebnisse, die deutlich von bisherigen abweichen, beschreiben die Forscher um Evgeny Epelbaum nun in einer Studie.
Neutronen und Protonen, die zusammen als Nukleonen bezeichnet werden, bilden Atomkerne und gehören somit zu den häufigsten Teilchen in unserem Universum. Die Nukleonen selbst bestehen aus stark wechselwirkenden Quarks und Gluonen und besitzen eine komplexe innere Struktur, deren genaues Verständnis Gegenstand aktiver Forschung ist. Eine der grundlegenden Eigenschaften der Nukleonen ist ihre Größe, die durch die Ladungsverteilung bestimmt wird. „Im Inneren gibt es positive und negative Ladungsbereiche, die beim Neutron zusammengenommen Null ergeben“, erklärt Evgeny Epelbaum. „Ihr Radius entspricht der örtlichen Ausdehnung der Ladungsverteilung. Er bestimmt somit die Größe der Neutronen.“
Bisherige Bestimmungen dieser Größe basierten auf Streuexperimenten mit sehr niederenergetischen Neutronen an einer Elektronenhülle von schweren Atomen wie etwa Wismut. „Man hat einen solchen Neutronenstrahl auf ein Target aus schweren Isotopen gerichtet, die viele Elektronen tragen, und sich angeschaut, wie viele Neutronen hindurch kamen“, sagt der Bochumer Physiker Arseniy Filin. Daraus hat man dann auf die vermutliche Größe der Neutronen zurückgeschlossen. „Das ist eine sehr indirekte Methode“, meint der Physiker.
In der aktuellen Arbeit hat die Gruppe zum ersten Mal den Neutronenladungsradius aus den leichtesten Atomkernen bestimmt. In einer theoretischen Studie ist es ihnen gelungen, den Deuteron-Radius sehr genau zu berechnen. Das Deuteron ist einer der einfachsten Atomkerne und besteht aus einem Proton und einem Neutron. Da sich die beiden Nukleonen im Deuteron relativ weit voneinander entfernt befinden, ist dieser Kern deutlich größer als seine beiden Bestandteile. „Unsere genaue Vorhersage des Deuteron-Radius kombiniert mit hochpräzisen spektroskopischen Messungen der Deuteron-Protonen-Radiusdifferenz ergab einen Wert für den Neutronenradius, der etwa 1,7 Standardabweichungen von den früheren Bestimmungen entfernt ist“, fasst Vadim Baru vom Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn zusammen. Der bisher angenommene Wert für die Größe eines Neutrons müsse also korrigiert werden.
RUB / DE