Das Proton schrumpft
Gitterrechnungen zum Proton-Radius weisen auf kleineren Wert hin, der mit dem Standardmodell verträglich ist.
Einer Gruppe von theoretischen Physikern der Johannes Gutenberg-Universität Mainz (JGU) ist es gelungen, ihre im Jahr 2021 publizierten Berechnungen des elektrischen Ladungsradius des Protons noch einmal deutlich zu verbessern und erstmals ein hinreichend präzises Ergebnis komplett ohne die Hinzuziehung experimenteller Daten zu erhalten. In der Diskussion um die Größe des Protons favorisieren auch diese neuen Rechnungen den kleineren Wert. Zugleich haben die Physiker in drei Preprint-Studien erstmals eine stabile Theorie-Vorhersage für den magnetischen Ladungsradius des Protons veröffentlicht.
Sämtliche bekannten Atomkerne bestehen aus Protonen und Neutronen – und doch sind viele Eigenschaften dieser allgegenwärtigen Nukleonen noch nicht verstanden. So gibt insbesondere der Radius des Protons seit einigen Jahren Rätsel auf: Im Jahr 2010 sorgte eine neue Messung des Proton-Radius mithilfe der Laserspektroskopie von myonischem Wasserstoff für Aufsehen – in diesem besonderen Wasserstoff ist das Elektron in der Hülle des Atoms ersetzt durch seinen schweren Verwandten, das Myon, wodurch sich die Genauigkeit der Messung erheblich steigern ließ.
Die Forscher ermittelten einen deutlich kleineren Wert, als er aus entsprechenden Messungen an normalem Wasserstoff und der Bestimmung des Protonradius aus Elektron-Proton-Streuexperimenten bekannt war. Die große Frage, die die Physik seitdem umtreibt: Verbirgt sich hinter der Abweichung eine neue Physik jenseits des Standardmodells oder handelt es sich lediglich um systematische Unsicherheiten der verschiedenen Messmethoden?
In den letzten Jahren gab es immer mehr Anhaltspunkte, dass der kleinere experimentelle Wert der richtige ist, sich also keine neue Physik hinter dem Proton-Radius Rätsel verbirgt. Theoretische Berechnungen leisten einen bedeutenden Beitrag, um diese Frage endgültig beantworten zu können. Bereits im Jahr 2021 gelang es Forschern um Hartmut Wittig vom Mainzer Exzellenzcluster Prisma+, Gitterrechnungen hinreichend präzise durchzuführen, um einen weiteren verlässlichen Hinweis auf den kleineren Protonradius zu bekommen. „Inzwischen sind wir nochmals einen großen Schritt vorangekommen“, erläutert Hartmut Wittig. „So hat Miguel Salg, Doktorand in meiner Arbeitsgruppe, sehr schöne Ergebnisse erzielt, die unsere frühere Rechnung nochmals deutlich verbessern und ausweiten.“
Konkret hatte die Mainzer Forschungsgruppe vor zwei Jahren nur den Isovektor-Radius berechnet, was nicht dasselbe ist wie der Proton-Radius. Den damals publizierten Wert für den Proton-Radius bestimmten sie unter Hinzuziehung experimenteller Daten für den Neutron-Radius. „Mittlerweile haben wir die damals noch fehlenden Anteile ebenfalls berechnet, unsere Statistik erhöht und die systematischen Fehler besser eingegrenzt, so dass wir nun auf experimentelle Daten erstmals vollständig verzichten können“, beschreibt Miguel Salg. „Außerdem konnten wir überprüfen, inwieweit unser Resultat von 2021 der kompletten direkten Berechnung standhält — mit dem Ergebnis, dass wir auch 2021 mit dem Wert richtig lagen.“
„Im Hinblick auf das Proton-Radius Rätsel können wir sicher sagen, dass sich auch durch die neuen Rechnungen die Hinweise immer weiter verdichten, dass der Protonradius durch den kleineren Wert richtig beschrieben ist“, ordnet Hartmut Wittig das Ergebnis ein. Die Rechnungen der Mainzer Physiker basieren auf der Theorie der Quantenchromodynamik (QCD). Sie beschreibt das Kräftespiel im Atomkern: Dort bindet die starke Wechselwirkung die Quarks als elementare Bausteine der Materie zu Protonen und Neutronen zusammen und wird durch Gluonen als Austauschteilchen vermittelt.
Um diese Vorgänge mathematisch simulieren zu können, greifen die Mainzer Wissenschaftler auf die Gitterfeldtheorie zurück. Ähnlich wie in einem Kristall werden die Quarks dabei auf die Punkte eines Raum-Zeit-Gitters verteilt. Mit speziellen Simulationsverfahren lassen sich dann bestimmte Eigenschaften von Nukleonen unter Einsatz von Supercomputern berechnen: in einem ersten Schritt die elektromagnetischen Formfaktoren. Diese beschreiben die Verteilung von elektrischer Ladung und Magnetisierung innerhalb des Protons. Aus ihnen wiederum lässt sich der Proton-Radius bestimmen.
Neben dem elektrischen Ladungsradius, von dem bisher die Rede war, besitzt das Proton auch einen magnetischen Ladungsradius, der ebenfalls Rätsel aufgibt. Auch diesen haben die Mainzer Theoretiker auf Basis der QCD berechnet. „Man könnte die unterschiedlichen Radien ganz vereinfacht durch die Ausdehnung einer durch das Proton gegebenen Ansammlung elektrischer beziehungsweise magnetischer Ladung veranschaulichen, die ein einfliegendes Elektron im Streuprozess ‚sieht‘“, erläutert Hartmut Wittig.
Auch für den magnetischen Ladungsradius erhielt die Mainzer Gruppe erstmals eine stabile Vorhersage, die rein auf theoretischen Berechnungen basiert. „Aus der präzisen Kenntnis der elektrischen und magnetischen Formfaktoren konnten wir darüber hinaus erstmals den sogenannten Zemach-Radius des Protons rein aus der QCD herleiten, der für die experimentellen Messungen an myonischem Wasserstoff eine wichtige Input-Größe ist. Dies zeigt einmal mehr, wie weit die Qualität von Gitter-QCD Rechnungen inzwischen fortgeschritten ist“, so Hartmut Wittig abschließend.
JGU / DE