08.02.2021

Der Tanz massereicher Sternenpaare

Korrelation zwischen der Geschwindigkeitsdispersion massereicher Sterne und deren Alter.

Sterne entstehen meist in Haufen innerhalb von Wolken aus Gas und Staub. Ein relativ kleiner Teil von ihnen hat eine Masse von mehr als dem Achtfachen der Sonne und gilt daher als massereich. Aus noch unbekannten Gründen bilden sie oft Doppelstern­systeme mit geringen Abständen zwischen den einzelnen Sternen. Eine Gruppe von Astronomen um María Claudia Ramírez-Tannus vom Max-Planck-Institut für Astronomie in Heidelberg hat nun entdeckt, dass die Geschwindigkeits­dispersion massereicher Sterne mit dem Alter der Haufen, zu denen sie gehören, rasch zunimmt. Das Team führt den Effekt auf die Zunahme der Bahngeschwin­digkeiten der massereichen Doppelsterne zurück, da die Sterne allmählich näher zusammenrücken und ihre Bahnen schrumpfen.

Abb.: Illustration zweier Szenarien, die erklären, wie die Bahnen von...
Abb.: Illustration zweier Szenarien, die erklären, wie die Bahnen von masse­reichen Sternen mit der Zeit schrumpfen. (Bild: MPIA)

Für ideale Situationen ist dieser Effekt als Drehimpuls­erhaltungssatz bekannt. Das Gesetz besagt, dass die Geschwindigkeit einer Rotation zunimmt, wenn sich die Masse zum Zentrum der Kreis­bewegung bewegt. Wir sehen dies zum Beispiel bei den Pirouetten von Eiskunst­läufern, die ihre Arme zum Körper bringen, um sich schneller zu drehen. Obwohl Doppelsterne diesem Gesetz nicht vollständig entsprechen, ist die Analogie qualitativ dennoch passend. In den letzten Jahren hat die Forschergruppe mehrere junge Sternentstehungs­gebiete beobachtet. Sie maßen die Geschwindigkeit einzelner massereicher Sterne und bestimmten deren Leuchtkraft und Oberflächen­temperatur. Dazu nutzten sie verschiedene Spektro­grafen, die am Very Large Telescope (VLT) der Europäischen Südsternwarte in der chilenischen Atacama­wüste installiert sind. Die Spektrografen erfassen die Spektrallinien der chemischen Elemente in den Stern­atmosphären und bemerken selbst kleinste Wellenlängen­verschiebungen. Mit dieser Eigenschaft hat das Forscherteam nun die Geschwindigkeiten abgeleitet, mit denen sich die Sterne entlang der Sichtlinie bewegen, die Radial­geschwindigkeit. Dazu ergänzten sie ihren Datensatz mit bereits veröffent­lichten Ergebnissen. Als die Astronomen all diese Geschwindigkeiten kombinierten, erhielten sie die Geschwindigkeits­dispersion der massereichen Sterne, die ein statistisches Maß für die Streuung der Radial­geschwindigkeiten ist.

„Unsere Ergebnisse deuten darauf hin, dass sich massereiche Doppelsterne zunächst auf großen Bahnen bilden und sich innerhalb kurzer Zeit zu engen Doppelstern­systemen entwickeln“, erklärt Ramírez-Tannus. „Das ist eine wichtige Erkenntnis, die hilft, die Modelle der Entstehungs­mechanismen einzugrenzen.“ In der Tat neigen massereiche Doppelsterne in älteren Sternhaufen dazu, enge Bahnen mit Umlaufperioden zwischen einigen Tagen und Wochen zu haben. Um zu verstehen, was die Sterne dazu veranlasst, sich einander anzunähern, schlagen Wissenschaftler zwei Szenarien vor. Sterne bilden sich aus dichten Ansammlungen in großen Wolken aus Gas und Staub. Während der Stern­entstehung wird diese Verdichtung durch Rotation zu einer Scheibe abgeflacht, während im Zentrum der Stern entsteht. Bilden sich bereits massereiche Doppelsterne als Paar, durchdringen ihre Bahnen die Restscheibe. Durch Reibung mit dem Scheiben­material schrumpfen die Bahnen und die Bahnge­schwindigkeit nimmt zu.

Der zweite Mechanismus tritt in Systemen mit einem dritten, massearmen Stern auf. Dessen Gravitations­kraft lenkt die masse­reicheren Begleiter in elliptische Bahnen, die sich im Laufe der Zeit immer kleineren und kreisförmigen Bahnen annähern. Die reduzierten Bahnradien führen wiederum zu höheren Geschwindigkeiten. In einigen Fällen wird der massearme Stern aus dem System heraus­geschleudert. Durch die zufällige Bewegung der Sterne in einem Haufen ergibt sich ein enger Geschwindig­keitsbereich, der zu einer Streuung von nur wenigen Kilometern pro Sekunde führt. Befinden sich jedoch genügend enge massereiche Doppelsterne im Haufen, verschieben deren schnelle Bahngeschwindig­keiten die Streuung zu höheren Werten.

Die Messung der Stern­leuchtkräfte und Oberflächen­temperaturen aus den Spektren stellt den Zusammenhang mit dem Alter der Haufen her. Abhängig von ihrer Masse haben Sterne eine charak­teristische Kombination aus Leuchtkraft und Temperatur, die sich mit dem Alter ändert. Durch die Messung der stellaren Eigenschaften der Sterne können die Astronomen daher das Alter der Haufen bestimmen. Durch die Kombination der Ergebnisse fanden die Wissenschaftler um Ramírez-Tannus eine Korrelation zwischen der Geschwindigkeits­dispersion massereicher Sterne in Haufen und deren Alter, was dafür spricht, dass die Dispersion innerhalb weniger Millionen Jahre schnell zunimmt. Daraus schließen die Astronomen, dass die Bahn­geschwindigkeiten der Doppelsterne zunehmen, woraus zu schließen ist, dass die Bahnen entsprechend kleiner werden.

Die Geschwindigkeits­dispersionen selbst geben jedoch nur einen eingeschränkten Blick auf die Vorgänge im Inneren der einzelnen Doppel­sternsysteme. Deshalb hat Frank Backs von der Universität Amsterdam mit Hilfe von Simulationen Informationen über die Umlaufzeiten der Doppelsterne gewonnen, die mit den gemessenen Geschwindigkeits­dispersionen übereinstimmen. „Ich habe viele Sternhaufen simuliert, indem ich die Verteilung der Bahnperioden ihrer Doppelstern­systeme variiert habe. Auf diese Weise konnte ich berechnen, welche davon zu den beobachteten Geschwindigkeits­dispersionen führen würden“, erklärt Backs. Er fügt hinzu: „Wir benötigten viele Simulationen, weil wir die genauen Eigenschaften der Systeme, wie zum Beispiel ihre Orientierung, nicht kennen, die die beobachteten Dispersionen beeinflussen.“

Insgesamt hat die Studie einen klaren Trend ergeben, bei dem die kleinsten Umlauf­zeiten innerhalb von etwa 1,6 Millionen Jahren von Monaten auf wenige Tage abnehmen. „Trotz der teilweise großen Unsicher­heiten der einzelnen Messungen ist der Trend eindeutig“, stellt Ramírez-Tannus fest. „Obwohl die Zeitskala noch nicht sehr genau bestimmt wurde, können wir daraus schließen, dass die Bahnen masse­reicher Doppelsterne nach astro­nomischen Maßstäben schnell schrumpfen.“
 

MPIA / JOL

Weitere Infos

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen