04.02.2011

Die ersten Sterne des Universums waren nicht allein

Astrophysiker gewinnen mit Hilfe von Computersimulationen neue Erkenntnisse zur Sternentstehung.

Astrophysiker gewinnen mit Hilfe von Computersimulationen neue Erkenntnisse zur Sternentstehung.


Die ersten Sterne des Universums waren nicht wie bisher angenommen Einzelsterne, sondern konnten mit einer Vielzahl kleinerer Begleitsterne geboren werden. Dies geschieht dann, wenn sich die Gasscheiben, die junge Sterne umgeben, während des Geburtsvorgangs teilen; aus diesen Fragmenten können sich neue Sterne bilden. Das haben Forscher am Zentrum für Astronomie der Universität Heidelberg zusammen mit Kollegen des Max-Planck-Instituts für Astrophysik in Garching und der University of Texas at Austin (USA) mit Computersimulationen nachgewiesen. Die Forschungsergebnisse werfen ein völlig neues Licht auf die Bildung der ersten Sterne nach dem Urknall.

Abb.: Blick auf die Gasscheibe, die einen neu gebildeten, zentralen Stern umgibt. Blau erscheinen hier Bereiche geringer Gasdichte, rötlich solche mit hoher Gasdichte. Deutlich erkennt man die Verdichtung innerhalb der Scheibe, aus der sich ein weiterer Stern entwickeln wird. (Bild: Arbeitsgruppe Sternentstehung, Uni Heidelberg)

Sterne entstehen aus kosmischen Gaswolken in einem komplexen Wechselspiel aus Gravitation und Gasdruck. Aufgrund der eigenen Schwereanziehung beginnt sich das Gas immer weiter zu verdichten. Dabei erwärmt es sich, der Druck steigt, und die Verdichtung kommt zum Erliegen. Wenn es dem Gas gelingt, thermische Energie abzustrahlen, kann sich die Komprimierung fortsetzen und ein neuer Stern entstehen. Dieser Kühlprozess funktioniert dann besonders gut, wenn dem Gas chemische Elemente wie Kohlenstoff oder Sauerstoff beigemischt sind. So bilden sich in der Regel Sterne mit nur geringer Masse, so wie etwa unsere Sonne. Im frühen Universum waren diese Elemente jedoch noch nicht vorhanden, so dass das ursprüngliche kosmische Gas nicht sehr gut kühlen konnte. Die meisten theoretischen Modelle sagen daher Sternenmassen von etwa dem Hundertfachen der Sonne voraus.

Der Heidelberger Astrophysiker Paul Clark und seine Kollegen haben diese Vorgänge mit Hilfe von Computersimulationen untersucht. Sie zeigen, dass dieses einfache Bild revidiert werden muss und es im frühen Universum nicht nur riesige Einzelsterne gab. Der Grund liegt in der Physik der sogenannten Akkretionsscheiben, die die Geburt der ersten Sterne begleitet haben. Der Gasnebel, aus dem sich ein neuer Stern bildet, rotiert. Dadurch fällt das Gas nicht direkt ins Zentrum; es bildet erst eine scheibenartige Struktur aus und kann nur durch interne Reibung weiter nach innen fließen. Wenn mehr Masse auf diese Scheibe einfällt als sie nach innen abtransportieren kann, wird sie instabil und zerfällt in mehrere Fragmente. Anstelle eines einzigen Sternes im Zentrum bildet sich dann eine Gruppe von mehreren Sternen – mit Abständen, die der Distanz zwischen Erde und Sonne vergleichbar sind.

Diese Erkenntnis eröffnet nach Angaben von Clark völlig neue Möglichkeiten, die ersten Sterne im Universum zu entdecken. Doppelsterne oder Mehrfachsysteme können in ihrem Endstadium intensive Ausbrüche von Röntgen- oder Gammastrahlen produzieren. So werden bereits Weltraummissionen geplant, die derartige Blitze im frühen Universum untersuchen sollen. Zugleich besteht die Möglichkeit, dass einige der ersten Sterne durch gravitative Wechselwirkung mit Nachbarsternen aus ihrer Geburtsumgebung herausgeschleudert wurden, bevor sie viel Masse ansammeln konnten. Im Gegensatz zu kurzlebigen massereichen Sternen überdauern massearme Sterne Jahrmilliarden. „Einige der ersten Sterne könnten daher heute noch leben, was es ermöglichen würde, die frühesten Stadien der Stern- und Galaxienbildung direkt vor unserer eigenen kosmischen Haustür zu erforschen“, erklärt Clark.

Ruprecht-Karls-Universität Heidelberg / AL


Weitere Infos

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Themen