18.02.2011

DNA-Filter für Elektronen-Spin

Wie ein Experiment zeigt, können DNA-Moleküle Elektronen abhängig von ihrem Spin filtern – möglicherweise besteht ein Zusammenhang zur Häufigkeit von links- und rechtshändigen Molekülen in der Natur.

Wie ein Experiment zeigt, können DNA-Moleküle Elektronen abhängig von ihrem Spin filtern – möglicherweise besteht ein Zusammenhang zur Häufigkeit von links- und rechtshändigen Molekülen in der Natur.

Ein internationales Team von Wissenschaftlern hat erstmals gezeigt, dass Elektronen – abhängig von ihrem Spin – Schichten von DNA-Molekülen durchqueren können oder aufgehalten werden. Dadurch entstehen "spinpolarisierte" Elektronen mit überwiegend einheitlich orientiertem Spin, welchen man auch als "Eigendrehimpuls" bezeichnen kann. Diese Entdeckung könnte zum Beispiel bei der Herstellung schnellerer und effizienterer Computer helfen. An der Studie beteilig sind die Arbeitsgruppen von Helmut Zacharias und Friedrich Hanne vom Physikalischen Institut der Westfälischen Wilhelms-Universität (WWU) und dem Center for Nanotechnology (CeNTech) in Münster, gemeinsam mit der Gruppe von Ron Naaman am Weizmann-Institut in Israel.

Das Experiment des Forscherteams beginnt mit Elektronen, die mithilfe von Laserstrahlung aus einer dünnen Goldschicht gelöst werden. Diese Elektronen zeigen zunächst keine Vorzugorientierung des Spins. Nachdem sie durch die etwa 20 Nanometer dicke selbstorganisierte Schicht aus doppelsträngiger DNA "geflogen" sind, ist die Spinorientierung der meisten Elektronen ihrer Flugrichtung entgegen gerichtet, sie sind also spinpolarisiert. "Die Elektronen zeigen nach dem Durchtritt durch die DNA-Schicht sogar dann mehrheitlich eine Spinorientierung antiparallel zur Flugrichtung, wenn sie zuvor überwiegend einen parallel zur Flugrichtung ausgerichteten Spin besaßen", erklärt Helmut Zacharias. "Die DNA-Schicht wirkt also als sehr effektiver 'Spinfilter'."

Die Beobachtung der Forscher könnte auch Auswirkungen auf Elektronentransferprozesse in der Natur haben. Die Erbsubstanz DNA liegt in der sogenannten Doppel-Helix-Struktur vor – das heißt, sie ist schraubenartig aufgebaut, ebenso wie weitere biologisch wichtige Moleküle. Man bezeichnet sie als chiral oder händig. "Möglicherweise lässt sich die Tatsache, dass nur rechtshändige DNA und Zucker sowie nur linkshändige Aminosäuren in der Natur vorkommen, auf den von uns beobachteten Effekt zurückführen", sagt Zacharias. "Ein früher oft herangezogener Grund für die Händigkeit der Natur ist die Hypothese, dass bei radioaktivem Beta-Zerfall Elektronen mit antiparallel zur Ausbreitungsrichtung polarisiertem Spin erzeugt werden. Gerade Elektronen mit dieser Spinorientierung werden bevorzugt durch die natürliche DNA hindurch gelassen. DNA mit anderem Drehsinn würde diese Elektronen absorbieren und könnte dabei auf Dauer zerstört werden. Ob der von uns entdeckte Effekt aber tatsächlich die Händigkeit in der Natur beeinflusst, können wir mit dem jetzigen Kenntnisstand noch nicht sagen."

Westfaelische Wilhelms-Universität Münster / AL


Weitere Infos

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Themen